
System Composer™
Reference

R2020a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

System Composer™ Reference
© COPYRIGHT 2019–2020 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.
Revision History
March 2019 Online only New for Version 1.0 (Release 2019a)
September 2019 Online only Revised for Version 1.1 (Release 2019b)
March 2020 Online only Revised for Version 1.2 (Release 2020a)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Functions
1

Classes
2

Blocks
3

iii

Contents

Functions

1

addChoice
Add a variant choice to a variant component

Syntax
compList = addChoice(variantComponent,choices)
compList = addChoice(variantComponent,choices,labels)

Description
compList = addChoice(variantComponent,choices) creates variant choices specified in
choices in the specified variant component and returns their handles.

compList = addChoice(variantComponent,choices,labels) creates variant choices
specified in choices with labels labels in the specified variant component and returns their
handles.

Input Arguments
variantComponent — Architecture component
component

The architecture where the variant choices are added.
Data Types: systemcomposer.arch.Component

choices — Variant choice names
cell array of strings

Cell array where each element defines the name of a choice component. The length of choices must
be the same as labels.
Data Types: string

labels — Variant choice labels
cell array of strings

Array of labels where each element is the label for the corresponding choice.. The length of labels
must be the same as choices.
Data Types: string

Output Arguments
compList — Created components
array of components

Array of created components. This array is the same size as choices and labels.

1 Functions

1-2

See Also
getActiveChoice | getChoices | makeVariant

Topics
“Create Variants”

Introduced in R2019a

 addChoice

1-3

addComponent
Add a component to the architecture

Syntax
components = addComponent(architecture,compNames)
components = addComponent(architecture,compNames,stereotypes)

Description
components = addComponent(architecture,compNames) adds a set of components specified
by the array of names.

components = addComponent(architecture,compNames,stereotypes) applies stereotypes
specified in the stereotypes to the new components.

Examples

Create a Model with two Components

Create model, get root architecture, and create components.

model = systemcomposer.createModel('archModel');
arch = get(model,'Architecture');
names = {'Component1','Component2'}
comp = addComponent(arch, names);

Input Arguments
architecture — Architecture model element
architecture

Parent architecture to which the component is added.
Data Types: systemcomposer.arch.Architecture

compNames — Names of components
cell array of strings

Cell array where each element defines the name of a new component. The length of compNames must
be the same as stereotypes.
Data Types: string

stereotypes — Stereotypes to apply to the components
cell array of stereotypes

Array of stereotypes where each element is the qualified stereotype name for the corresponding
component in the form '<profileName>.<stereotypeName>'. The length of stereotypes must
be the same as compNames.

1 Functions

1-4

Data Types: string

Output Arguments
components — Created components
array of components

Array of created components. This array is the same size as compNames and stereotypes.

See Also
addPort | connect

Topics
“Components”

Introduced in R2019a

 addComponent

1-5

addComponent
Package: systemcomposer.View

Add component to view given path

Syntax
compOccur = addComponent(object, compPath, contextView)

Description
compOccur = addComponent(object, compPath, contextView) adds the component with the
specified path to the view given by the contextView parameter.

addComponent is a method for the class systemcomposer.view.ViewArchitecture.

Input Arguments
object — View architecture object
systemcomposer.view.ViewArchitecture

<argument description>
Data Types: <object data type>

compPath — <argument purpose>
<argument value> (default) | <argument value>

Path to the component including the name of the top-model.
Data Types: <argument data type>

contextView — <argument purpose>
<argument value> (default) | <argument value>

Property ‘Parent’ is empty.
Data Types: systemcomposer.view.ViewArchitecture

Output Arguments
parent — <argument purpose>
<argument value>

<argument description>
Data Types: <argument data type>

1 Functions

1-6

See Also

Introduced in R2019b

 addComponent

1-7

addVariantComponent
Add a component to the architecture

Syntax
variantList = addVariantComponent(architecture,variantComponents)
variantList = addVariantComponent(architecture,variantComponents,'Position',
position)

Description
variantList = addVariantComponent(architecture,variantComponents) adds a set of
components specified by the array of names.

variantList = addVariantComponent(architecture,variantComponents,'Position',
position) creates a variant component the architecture at a given position.

Examples

Create a Variant with two Components

Create model, get root architecture, and create a component with two variants.

model = systemcomposer.createModel('archModel');
arch = get(model,'Architecture');
names = {'Component1','Component2'}
variants = addVariantComponent(arch, names);

Input Arguments
architecture — Architecture model element
architecture

Parent architecture to which the component is added.
Data Types: systemcomposer.arch.Architecture

variantComponents — Names of variant components
cell array of strings

Cell array where each element defines the name of a variant component.
Data Types: string

position — four-element vector that specifies location of the top corner of the component
1x4 array

The array denotes the top corner of the component in terms of its x and y coordinates followed by the
x and y coordinates of the bottom corner. When adding more than one variant component, a matrix of
size [NX4] may be specified where N is the number of variant components being added.

1 Functions

1-8

Data Types: double

Output Arguments
variantList — Handles to variant components
array of components

Array of variant components. This array is the same size as variantComponents.

See Also
addPort | connect

Topics
“Components”

Introduced in R2019a

 addVariantComponent

1-9

addElement
Add a signal interface element

Syntax
element = addElement(interface,name)
element = addElement(interface,name,Name,Value)

Description
element = addElement(interface,name) adds an element to a signal interface with default
properties.

element = addElement(interface,name,Name,Value) sets the properties of the element as
specified in Name,Value.

Examples

Add an Interface and an Element

Add an interface newinterface to the interface dictionary of the model and add an element with
type double to it.

interface = addInterface(archModel.InterfaceDictionary,'newsignal');
element = addElement(interface,'newelement','Type','double')

Input Arguments
interface — new interface object
signal interface

This is the interface that the new element is to be added.
Data Types: systemcomposer.interface.SignalInterface

name — Name of the new element
string

The new element name must be a valid variable name.
Data Types: char

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'Type', 'double'

1 Functions

1-10

Type — Type of element
valid data type string

Data type of the element. Must be a valid data type.
Data Types: char

Dimensions — Dimensions of element
positive integer array

Each element is the size of the element in the corresponding direction. A scalar integer indicates a
scalar or vector element, a row vector with two integers indicates a matrix element.
Data Types: char

Complexity — Complexity of element
real | complex

This describes whether the element is purely real, or if an imaginary part is allowed.
Data Types: string

Output Arguments
element — new interface element object
signal element

See Also
getElement | getInterfaces | linkDictionary | systemcomposer.createDictionary |
unlinkDictionary

Topics
“Define Interfaces”

Introduced in R2019a

 addElement

1-11

addPort
Add ports to architecture

Syntax
ports = addPort(architecture,portNames,portTypes)
ports = addPort(architecture,portNames,portTypes,stereotypes)

Description
ports = addPort(architecture,portNames,portTypes) adds a set of ports with specified
names.

ports = addPort(architecture,portNames,portTypes,stereotypes) also applies
stereotypes.

Examples

Add Ports to Architecture

Create model, get root architecture, add component, and add ports.

model = systemcomposer.createModel('archModel');
rootArch = get(model,'Architecture');
newcomponent = addComponent(rootArch,'NewComponent');
newport = addPort(newcomponent.Architecture,'NewCompPort','in');

Input Arguments
architecture — Component architecture
Architecture

addPort adds ports to the architecture of a component. Use <component>.Architecture to access
the architecture of a component.
Data Types: systemcomposer.arch.Architecture

portNames — Names of ports
cell array of strings

Port names must be unique within each component. If necessary, System Composer appends a
number to the port name to ensure uniqueness. The size of portNames,portTypes, and
stereotypes must be the same.
Data Types: string

portTypes — Port directions
cell array of strings

Port directions are given in a cell array. Each element is either 'in' or 'out'.

1 Functions

1-12

Data Types: string

stereotypes — Stereotypes to apply to the components
Array of stereotypes

Each stereotype in the array must either be a mixin stereotype or a port stereotype. The size of
portNames,portTypes, and stereotypes must be the same.
Data Types: systemcomposer.profile.Stereotype

Output Arguments
ports — Created ports
Array of ports

See Also
addComponent | connect | destroy | systemcomposer.arch.BasePort

Topics
“Ports”

Introduced in R2019a

 addPort

1-13

addInterface
Create a named interface in an interface dictionary

Syntax
interface = addInterface(dictionary,name)
interface = addInterface(dictionary,name,'SimulinkBus',busObject)

Description
interface = addInterface(dictionary,name) adds a named interface to a specified interface
dictionary.

interface = addInterface(dictionary,name,'SimulinkBus',busObject) constructs an
interface that mirrors an existing Simulink® bus object.

Examples

Add an Interface

Add an interface newinterface to the specified data dictionary.

interface = addInterface(dictionary,'newinterface')

Add a Simulink Bus Mirrored Interface

Add a named interface that mirrors an existing Simulink bus object to a specified dictionary.

interface = addInterface(dictionary, 'newInterface', 'SimulinkBus', 'myBus')

Input Arguments
dictionary — Data dictionary attached to the architecture model
System Composer dictionary

Default data dictionary that defines local interfaces or an external data dictionary that carries
interface definitions. If the model links to multiple data dictionaries, then dictionary must be the
one that carries interface definitions. For information on how to create a dictionary, see
systemcomposer.createDictionary.
Data Types: systemcomposer.interface.Dictionary

name — Name of the new interface
string

Name of the new interface, specified as a valid variable name.
Data Types: char

1 Functions

1-14

busObject — Simulink bus object that the new interface mirrors
Simulink bus

Argument used when the interface is already defined in a Simulink bus object.
Data Types: simulink bus

Output Arguments
interface — new interface object
signal interface

Interface object with properties Dictionary, Name, and Elements.

See Also
addElement | getInterface | getInterfaces | linkDictionary |
systemcomposer.createDictionary

Topics
“Define Interfaces”

Introduced in R2019a

 addInterface

1-15

addProperty
Define a custom property for a stereotype

Syntax
property = addProperty(stereotype,name)
property = addProperty(stereotype,name,Name,Value)

Description
property = addProperty(stereotype,name) returns a new property definition with name
that is contained in stereotype.

property = addProperty(stereotype,name,Name,Value)returns a property definition that
is configured with specified property values.

Examples

Add a Property

Add a component stereotype and add a VoltageRating property with value 5.

profile = systemcomposer.profile.Profile.createProfile('myProfile')
stype = addStereotype(profile,'electricalComponent','AppliesTo','Component')
property = addProperty(stype,'VoltageRating','DefaultValue','5');

Input Arguments
stereotype — Stereotype to which the property is added
stereotype object

Stereotype definition, specified as an object.

name — Name of the property
character vector

Name of the property must be unique within the stereotype.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'Type', 'double'

Type — Property data type
double (default) | single | int64 | int32 | int16 | int8 | uint64 | uint32 | uint8 | boolean |
string | enumeration class name

1 Functions

1-16

Type of this property. One of valid data types or the name of a MATLAB class that defines an
enumeration. For more information, see “Use Enumerated Data in Simulink Models” (Simulink).
Example: addProperty(stype,'Color','Type','BasicColors')
Data Types: char

Dimensions — Dimensions of property
[] (default) | positive integer array

Array of dimensions describing the matrix shape of the value of this property. Empty implies no
restriction.
Data Types: double

Min — Minimum value
numeric value

Optional minimum value of this property. To set both 'Min' and 'Max' together, use the
setMinAndMax method.
Example: setMinAndMax(property, min, max)
Data Types: double

Max — Maximum value
numeric value

Optional maximum value of this property. To set both 'Min' and 'Max' together, use the
setMinAndMax method.
Example: setMinAndMax(property, min, max)
Data Types: double

Units — Property units
string

Units of the property value, specified as a string. If specified, all values of this property on model
elements are checked for consistency with these units according to Simulink unit checking rules. For
more information, see “Unit Consistency Checking and Propagation” (Simulink).
Data Types: char

DefaultValue — Default value
string expression | cell array of string value and string unit

Default value of this property, specified as a string expression or a cell array of string value and string
unit.
Data Types: double

Output Arguments
property — Created property
property object

Property object.

 addProperty

1-17

See Also
getProperty | setProperty

Topics
“Define Profiles and Stereotypes”
“Set Tags and Properties for Analysis”

Introduced in R2019a

1 Functions

1-18

addStereotype
Add a stereotype to the profile

Syntax
stereotype = addStereotype(profile,stereotypeName)
stereotype = addStereotype(profile,stereotypeName,Name,Value)

Description
stereotype = addStereotype(profile,stereotypeName) adds a new stereotype with the
specified name.

stereotype = addStereotype(profile,stereotypeName,Name,Value) specifies the
properties of the stereotype.

Examples

Add a Component Stereotype

Add a component stereotype to the profile.

addStereotype(profile,'electricalComponent','AppliesTo','Component')

Input Arguments
profile — Profile object
profile

The profile that contains the new stereotype.
Data Types: systemcomposer.profile.Profile

stereotypeName — Name of new stereotype
string

The name of the stereotype must be unique within the profile.
Data Types: char

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'AppliesTo', 'Component'

Name, Value — Stereotype properties and values
positive integer array

 addStereotype

1-19

See systemcomposer.profile.Stereotype for stereotype properties and values.

Output Arguments
stereotype — Created stereotype
stereotype

See Also
applyStereotype | removeStereotype

Topics
“Define Profiles and Stereotypes”

Introduced in R2019a

1 Functions

1-20

applyProfile
Apply profile to a model

Syntax
applyProfile(modelObject,profileFile)

Description
applyProfile(modelObject,profileFile) applies the profile to an architecture model and
makes all of the constituent stereotypes available.

Input Arguments
modelObject — Architecture model object
architecture model
Data Types: systemcomposer.arch.Model

profileFile — Profile file
string
Data Types: string

See Also
createProfile | removeProfile

Topics
“Define Profiles and Stereotypes”

Introduced in R2019a

 applyProfile

1-21

applyStereotype
Apply a stereotype to a model element

Syntax
applyStereotype(element,stereotype)

Description
applyStereotype(element,stereotype) applies a stereotype to a model element. Adds the
specified stereotype if not already applied to a model element. Stereotypes can be applied to Base
Architecture, Base Architecture port, and Base Connector model elements.

Input Arguments
element — Architecture model element
architecture component | architecture port | architecture connector

The stereotype is applied to this component, port, or connector.
Data Types: systemcomposer.arch.Element

stereotype — Reference stereotype
architecture stereotype

The qualified stereotype name in the form <profile>.<stereotype>. The profile must already be
applied to the model.
Data Types: char

See Also
batchApplyStereotype | removeStereotype

Topics
“Use Stereotypes and Profiles”

Introduced in R2019a

1 Functions

1-22

batchApplyStereotype
Apply stereotype to all elements in the specified architecture

Syntax
= batchApplyStereotype(architecture,elementType,stereotype)
= batchApplyStereotype(architecture,elementType,stereotype,'Recurse',flag)

Description
= batchApplyStereotype(architecture,elementType,stereotype) applies the
stereotype to all elements that match elementType within architecture.

= batchApplyStereotype(architecture,elementType,stereotype,'Recurse',flag)
applies the stereotype to all elements that match elementType within architecture and its sub-
architectures.

Examples

Apply a Stereotype to All Connectors

Apply the standardConn stereotype in GeneralProfile profile to all connectors within the
architecture arch.

batchApplyStereotype(arch,'Connector','GeneralProfile.standardConn');

Input Arguments
architecture — Architecture model element
architecture

Parent architecture layer for all components to attach the stereotype.
Data Types: systemcomposer.arch.Architecture

elementType — Type of architecture element
'Component' | 'Port' | 'Connector'

The element type to apply the stereotype. The stereotype must be applicable for this element type.
Data Types: string

stereotype — Stereotype to apply
string

Qualified name for the stereotype in the form 'profileName.stereotypeName' The stereotype
must be applicable to components.
Data Types: string

 batchApplyStereotype

1-23

flag — Apply stereotype recursively
true | false

If this flag is set, the stereotype is applied to the elements in the architecture and its sub-
architectures.
Data Types: logical

See Also
removeStereotype

Topics
“Use Stereotypes and Profiles”

Introduced in R2019a

1 Functions

1-24

close
Package: systemcomposer.arch

Close System Composer model

Syntax
close(objModel)

Description
close(objModel) closes the specified model in System Composer.

Examples

Create, Open, and Close a Model

Model = systemcomposer.createModel('modelName');
open(Model)
close(Model)

Input Arguments
objModel — Model to close in editor
systemcomposer.arch.Model object

Model to close in the System Composer editor.

See Also
createModel

Topics
“Create an Architecture Model”

Introduced in R2019a

 close

1-25

connect
Connect pairs of components

Syntax
connectors = connect(srcComponent,destComponent)
connectors = connect(srcComponent,destComponent,'Stereotype',stereotypes)
connectors = connect(srcComponent,destComponent,'Rule',rule)
connectors = connect(architecture,srcPorts,destPorts,stereotypes,rule)

Description
connectors = connect(srcComponent,destComponent) connects the unconnected output
ports of srcComponent to the unconnected input ports of destComponent based on matching port
names, and returns a handle to the connector.

connectors = connect(srcComponent,destComponent,'Stereotype',stereotypes)
additionally applies the specified stereotype to the connector.

connectors = connect(srcComponent,destComponent,'Rule',rule) specifies a rule for
establishing connections.

connectors = connect(architecture,srcPorts,destPorts,stereotypes,rule) connects
pairs of ports in the architecture.

Examples

Connect System Composer Components

This example shows how to create and connect two components.

Create the top level architecture model.

modelName = "archModel";
arch = systemcomposer.createModel(modelName);
rootArch = get(arch,'Architecture');

Create two new components.

names = {'Component1','Component2'};
newcomponents = addComponent(rootArch,names);

Add ports to these components.

outport1 = addPort(newcomponents(1).Architecture,'testsig','out');
inport1 = addPort(newcomponents(2).Architecture,'testsig','in');

Connect the components.

conns = connect(newcomponents(1),newcomponents(2));

1 Functions

1-26

View the model.

systemcomposer.openModel(modelName);

Improve the layout.

Simulink.BlockDiagram.arrangeSystem(modelName)

Input Arguments
architecture — Architecture model element
architecture

Interface and the underlying structural definition of a model or component, specified as an
Architecture object.
Data Types: systemcomposer.arch.Architecture

srcPorts — Array of source ports
array of ports

Array of source ports. Must be the same length as destPorts and must consist of all output ports.
Data Types: systemcomposer.arch.Port

destPorts — Array of destination ports
array of ports

Array of destination ports. Must be the same length as srcPorts and must consist of all source
ports.
Data Types: systemcomposer.arch.Port

srcComponent — Source component
architecture component

Source component.
Data Types: systemcomposer.arch.Component

destComponent — Destination component
architecture component

Destination component.
Data Types: systemcomposer.arch.Component

stereotypes — Stereotypes to apply to the connections
array of stereotypes

Stereotypes to apply to the connections, specified as an array.
Data Types: systemcomposer.profile.Stereotype

rule — Rule to match ports for connection
'name' | 'interface'

Rule to match ports for connection.

 connect

1-27

Data Types: systemcomposer.arch.Component

Output Arguments
connectors — Created connections
array of connections

Array of connections.

See Also
addPort

Topics
“Create an Architecture Model”

Introduced in R2019a

1 Functions

1-28

systemcomposer.createDictionary
Create data dictionary

Syntax
dict_id = systemcomposer.createDictionary(dictionaryName)

Description
dict_id = systemcomposer.createDictionary(dictionaryName) creates a new Simulink
data dictionary to hold interfaces and returns a handle to the
systemcomposer.interface.Dictionary object.

Input Arguments
dictionaryName — Name of new data dictionary
string

Name of the new data dictionary, returned as a string. The name must include the .sldd extension.
Example: 'new_dictionary.sldd'
Data Types: char

Output Arguments
dict_id — Handle to the dictionary
systemcomposer.interface.Dictionary object

Handle to the dictionary, specified as a systemcomposer.interface.Dictionary object.

Examples
dict_id = systemcomposer.createDictionary('new_dictionary.sldd')

See Also
addInterface | linkDictionary | save | unlinkDictionary

Topics
“Save and Link Interfaces”

Introduced in R2019a

 systemcomposer.createDictionary

1-29

createModel
Create a System Composer model

Syntax
objModel = systemcomposer.createModel(modelName)

Description
objModel = systemcomposer.createModel(modelName) creates a model with name
modelName and returns its handle.

createModel is the constructor method for the class systemcomposer.arch.Model.

Input Arguments
modelName — Name of a new model
character vector | string

Model name must be a valid MATLAB variable name.
Data Types: char | string

Output Arguments
objModel — Model handle
Model object
Data Types: systemcomposer.arch.Model

Examples
Model = systemcomposer.createModel('model_name')

Model =

 Model with properties:

 Name: 'model_name'
 Architecture: [1×1 systemcomposer.arch.Architecture]
 SimulinkHandle: 2.0005
 Views: [0×0 systemcomposer.view.ViewArchitecture]
 Profiles: [0×0 systemcomposer.profile.Profile]
 InterfaceDictionary: [1×1 systemcomposer.interface.Dictionary]

See Also
loadModel | open | save

Topics
“Compose Architecture Visually”

1 Functions

1-30

Introduced in R2019a

 createModel

1-31

createProfile
Create profile

Syntax
profile = systemcomposer.createProfile(profileName)

Description
profile = systemcomposer.createProfile(profileName) creates a new profile object of
type systemcomposer.profile.Profile to set up a set of stereotypes. To save a profile in a
different directory, type profile.save(‘my/New/File/Path/’).

Input Arguments
profileName — Name of new profile
string

Name of the new profile, specified as a string.
Example: 'new_profile'
Data Types: char | string

Output Arguments
profile — Profile handle
profile object

Examples
systemcomposer.createProfile('new_profile')
profile = systemcomposer.createProfile('new_profile')

See Also
applyProfile | removeProfile | systemcomposer.loadProfile

Topics
“Create a Profile and Add Stereotypes”

Introduced in R2019a

1 Functions

1-32

createSimulinkBehavior
Create a Simulink model and link component to it

Syntax
createSimulinkBehavior(component,modelName)

Description
createSimulinkBehavior(component,modelName) creates a new Simulink model with the same
interface as the component and links the component to the new model. This method works only if the
component has no children.

Examples

Create a Simulink Model and Link

Create a Simulink behavior model for the component robotcomp in Robot.slx and link the
component to the model.

createSimulinkBehavior(robotcomp,'Robot');

Input Arguments
component — Architecture component
architecture component

The component must have no children.
Data Types: systemcomposer.arch.Component

modelName — Model name
string

Name of the Simulink model created by this function.
Data Types: char

See Also
linkToModel

Topics
“Implement Components in Simulink”

Introduced in R2019a

 createSimulinkBehavior

1-33

createViewArchitecture
Package: systemcomposer.arch

Create a view

Syntax
view = createViewArchitecture(obj, name,Name,Value)
view = createViewArchitecture(obj, name,constraint,Name,Value)
view = createViewArchitecture(obj, name,constraint,groupBy,Name,Value)

Description
view = createViewArchitecture(obj, name,Name,Value) creates an empty view with the
given name.

view = createViewArchitecture(obj, name,constraint,Name,Value) creates a view with
the given name where the contents are populated by finding all components in the model that satisfy
the provided query.

view = createViewArchitecture(obj, name,constraint,groupBy,Name,Value) creates a
view with the given name where the contents are populated by finding all components in the model
which satisfy the provided query. The selected components are then grouped by the fully qualified
property name.

Examples

Create a View Based on a Query and Review Status

scKeylessEntrySystem;
m = systemcomposer.openModel('KeylessEntryArchitecture');

import systemcomposer.query.*;
myQuery = HasStereotype(IsStereotypeDerivedFrom("AutoProfile.SoftwareComponent"));

view = m.createViewArchitecture('Software Review Status', myQuery, 'AutoProfile.BaseComponent.ReviewStatus', 'Color', 'red');

m.openViews;

Input Arguments
obj — Model object
systemcomposer.arch.Model object

Model object to use to create a view.

name — Name of the view
character vector | string

1 Functions

1-34

Name of the view, specified as a character vector or string.

constraint — Query object
systemcomposer.query object

Constraint created using systemcomposer.query* objects representing specific conditions. A
constraint can contain a subconstraint that can be joined together with another constraint using AND
or OR. A constraint can also be negated using NOT.

groupBy — User-defined property
enumeration

User-defined property specified as an enumeration by which to group components.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'IncludeReferenceModels', true

IncludeReferenceModels — Option to search for reference architectures
false (default) | true

Indicates if find searches referenced architectures or does not include referenced architectures. The
default is false.
Example: 'IncludeReferenceModels', true

Color — Color of the view
string | character array | hexadecimal value

Associated color of the view specified as a string or character array that contains the name of the
color or an RGB hexadecimal value.
Example: 'Color','blue'
Example: 'Color,'#FF00FF'

Output Arguments
view — Model architecture view
ViewArchitecture object

Model architecture view created based on the specified query and properties.

See Also
Topics
“Build an Architecture Model from Command Line”

Introduced in R2019b

 createViewArchitecture

1-35

createViewComponent
Create new view component

Syntax
vc = createViewComponent(object, name, contextView)

Description
vc = createViewComponent(object, name, contextView) creates a new view component
with the provided name in the view given by the parameter ‘contextView’.

createViewComponent is a method for the class systemcomposer.view.ViewArchitecture

Input Arguments
object — <argument purpose>
<object> (default) | <object>

<argument description>
Data Types: <object data type>

name — Name of component
character vector (default)

Name of component
Data Types: character vector

contextView — <argument purpose>
<argument value> (default) | <argument value>

Property ‘Parent’ is empty.
Data Types: systemcomposer.view.ViewArchitecture

Output Arguments
parent — <argument purpose>
<argument value>

<argument description>
Data Types: <argument data type>

See Also

Introduced in R2019b

1 Functions

1-36

deleteInstance
Delete an architecture instance

Syntax
deleteInstance(architectureInstance)

Description
deleteInstance(architectureInstance) deletes an existing instance.

Input Arguments
architectureInstance — The architecture instance
architecture instance

The architecture instance to be deleted.
Data Types: systemcomposer.analysis.ArchitectureInstance

See Also
instantiate

Topics
“Write Analysis Function”

Introduced in R2019a

 deleteInstance

1-37

destroy
Remove and destroy a model element

Syntax
destroy(element)

Description
destroy(element) removes and destroys the model element.

Examples

Destroy a Component

Create a component and then remove it from the model.

newcomponent = addComponent(rootArch,'NewComponent');
destroy(newcomponent)

Input Arguments
element — Architecture model element
architecture element | interface element | signal element | property
Data Types: systemcomposer.arch.Element |
systemcomposer.interface.SignalInterface |
systemcomposer.interface.SignalElement | systemcomposer.profile.Property

See Also
removeElement | removeProfile | removeProperty

Introduced in R2019a

1 Functions

1-38

systemcomposer.exportModel
Export model information as MATLAB tables

Syntax
[exportedSet] = systemcomposer.exportModel(modelName)

Description
[exportedSet] = systemcomposer.exportModel(modelName) exports model information for
components, ports, connectors, and interfaces to be imported into MATLAB® tables. The exported
tables have prescribed formats to specify model element relationships, stereotypes, and properties.

Input Arguments
modelName — Name of model to be exported
string | character vector

Name of System Composer model to be exported, specified as a string.
Example: 'exMobileRobot'
Data Types: char | string

Output Arguments
exportedSet — Model tables
struct

Structure containing tables components, ports, connections, and portInterfaces.

Examples
Export a System Composer Model

To export a model, pass the model name and as an argument to the exportModel function. The
function returns a structure containing four tables components, ports, connections, and
portInterfaces.

exportedSet = systemcomposer.exportModel('exMobileRobot')

exportedSet =

 struct with fields:

 components: [11×4 table]
 ports: [22×4 table]
 connections: [16×4 table]
 portInterfaces: [0×9 table]

 systemcomposer.exportModel

1-39

See Also
systemcomposer.importModel

Topics
“Importing and Exporting Architecture Models”

Introduced in R2019a

1 Functions

1-40

systemcomposer.extractArchitectureFromSimulink
Extract architecture from Simulink model

Syntax
systemcomposer.extractArchitectureFromSimulink(SimulinkModel,
architectureModelName)

Description
systemcomposer.extractArchitectureFromSimulink(SimulinkModel,
architectureModelName) exports the Simulink model SimulinkModel to an architecture model
architectureModelName and saves it in the current directory.

Examples

Extract Architecture from Example Model

Extract architecture from a model with subsystem and variant architecture.

ex_modeling_variants;
systemcomposer.extractArchitectureFromSimulink('ex_modeling_variants','archModel')

Input Arguments
SimulinkModel — Model from which to extract the architecture
Simulink model

The model must be on the path.
Data Types: model

architectureModelName — Architecture model name
string

A new architecture model that shows the architecture of the Simulink model. This model is saved in
the current directory.
Data Types: char

See Also
linkToModel

Topics
“Extract Architecture from Simulink Model”

Introduced in R2019a

 systemcomposer.extractArchitectureFromSimulink

1-41

find
Package: systemcomposer.arch

Find architecture elements using a query

Syntax
[p] = find(obj,constraint,Name,Value)
[p, elem] = find(___)
[p] = find(obj,constraint,rootArch,Name,Value)

Description
[p] = find(obj,constraint,Name,Value) finds all element paths starting from the root
architecture of the model that satisfy the constraint query with additional options specified by one
or more name-value pair arguments.

[p, elem] = find(___) returns the architecture element objects and their paths that satisfy the
constraint query. If rootArch is not provided, then the function finds model elements in the root
architecture of the model. The output argument paths contain a fully qualified named path to the
element e from the given root architecture.

[p] = find(obj,constraint,rootArch,Name,Value) finds all element paths starting from the
specified root architecture that satisfy the constraint query with additional options specified by
one or more name-value pair arguments.

Examples

Find Model Element Paths that Satisfy the Query
find(modelObj, HasStereotype(IsStereotypeDerivedFrom('mProfile.BaseComp')),...
 'Recurse', true, 'IncludeReferenceModels', true, 'ElemType', 'Component')

Find Elements in an Architecture Model

This example shows how to find elements in an architecture model based on a query.

Create Model

Create an architecture model with two components.

m = systemcomposer.createModel('exModel');
comps = m.Architecture.addComponent({'c1','c2'});

Create Profile and Stereotypes

Create a profile and stereotypes for your architecture model.

1 Functions

1-42

pf = systemcomposer.profile.Profile.createProfile('mProfile');
b = pf.addStereotype('BaseComp', 'AppliesTo','Component','Abstract', true);
s = pf.addStereotype('sComp', 'Parent',b);

Apply Profile and Stereotypes

Apply the profile and stereotypes to your architecture model.

m.Architecture.applyProfile(pf.Name)
comps(1).applyStereotype(s.FullyQualifiedName)

Find the Element

Find the element in your architecture model based on a System Composer query.

import systemcomposer.query.*;
[p, elem] = find(m, HasStereotype(IsStereotypeDerivedFrom('mProfile.BaseComp')),...
'Recurse', true, 'IncludeReferenceModels', true)

p = 1x1 cell array
 {'exModel/c1'}

elem =
 Component with properties:

 IsAdapterComponent: 0
 Architecture: [1x1 systemcomposer.arch.Architecture]
 Name: 'c1'
 Parent: [1x1 systemcomposer.arch.Architecture]
 Ports: [0x0 systemcomposer.arch.ComponentPort]
 OwnedPorts: [0x0 systemcomposer.arch.ComponentPort]
 OwnedArchitecture: [1x1 systemcomposer.arch.Architecture]
 Position: [15 15 65 65]
 Model: [1x1 systemcomposer.arch.Model]
 SimulinkHandle: 2.0005
 SimulinkModelHandle: 4.8828e-04
 UUID: '9aad619b-c3a9-4f15-8ab8-654fe348a233'
 ExternalUID: ''

Clean Up

Uncomment to remove the model and the profile.

% m.close('force');
% systemcomposer.profile.Profile.closeAll;

 find

1-43

Find Architecture Element Paths that Satisfy the Query
find(modelObj, HasStereotype(IsStereotypeDerivedFrom('mProfile.BaseComp')),...
archToQuery, 'Recurse', true, 'IncludeReferenceModels', true)

Input Arguments
obj — Model object
systemcomposer.arch.Model object

Model object to query using the constraint.

constraint — Query object
systemcomposer.query object

Constraint created using systemcomposer.query* objects representing specific conditions. A
constraint can contain a subconstraint that can be joined together with another constraint using AND
or OR. A constraint can also be negated using NOT.

Query Objects

Query Object Condition
Property Retrieve a nonevaluated value or the given

property.
PropertyValue Retrieve a property from a System Composer

object or a stereotype property and then evaluate
the property value.

Compare Compare a property value to the given value.
HasPort A component has a port that satisfies the given

subconstraint.
HasInterface A port has an interface that satisfies the given

subconstraint.
HasInterfaceElement An interface has an interface element that

satisfies the given subconstraint.
HasStereotype An architecture element has a stereotype that

satisfies the given subconstraint.
IsInRange A property value is within the given range.
AnyComponents An element is a component.
IsStereotypeDerivedFrom A stereotype is derived from the given stereotype.

rootArch — Root architecture
string

Root architecture of the model specified as a string.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

1 Functions

1-44

Example: 'Recurse', true, 'IncludeReferenceModels', true

Recurse — Option to recursively search through model
true (default) | false

Indicates if find recursively searches through the model or searches only the specified layer. The
default is true.
Example: 'Recurse', true

IncludeReferenceModels — Option to search for reference architectures
false (default) | true

Indicates if find searches referenced architectures or does not include referenced architectures. The
default is false.
Example: 'IncludeReferenceModels', true

Output Arguments
p — Element paths
cell array of element paths

Cell array of paths to the elements that satisfy constraint.

elem — Element objects
element object

Architecture element objects that satisfy constraint.

See Also
Topics
“Build an Architecture Model from Command Line”

Introduced in R2019a

 find

1-45

getActiveChoice
Get the active choice on the variant component

Syntax
choice = getActiveChoice(variantComponent)

Description
choice = getActiveChoice(variantComponent) finds which choice is active for the variant
component.

Input Arguments
variantComponent — Architecture component
component

The architecture where the variant choices are selected.
Data Types: systemcomposer.arch.Component

Output Arguments
choice — Handle of chosen variant
component

Handle to the chosen variant.
Data Types: systemcomposer.arch.Component

See Also
addChoice | getChoices | setActiveChoice

Topics
“Create Variants”

Introduced in R2019a

1 Functions

1-46

getChoices
Get available choices in the variant component

Syntax
compList = getChoices(variantComponent)

Description
compList = getChoices(variantComponent) returns the list of choices available for a variant
component.

Input Arguments
variantComponent — Architecture component
component

Variant component with multiple choices.
Data Types: systemcomposer.arch.Component

Output Arguments
compList — Choices available for the variant component
array of components

List of possible choices for the variant component.

See Also
addChoice | getActiveChoice | setActiveChoice

Topics
“Create Variants”

Introduced in R2019a

 getChoices

1-47

getCondition
Return the variant control on the choice within the variant component

Syntax
expression = getCondition(variantComponent,choice)

Description
expression = getCondition(variantComponent,choice) returns the variant control on the
choice within the variant component.

Input Arguments
variantComponent — Architecture component
component

Variant component with multiple choices.
Data Types: systemcomposer.arch.Component

choice — Choice in a variant component
component

The choice whose control string is returned by this function.
Data Types: systemcomposer.arch.Component

Output Arguments
expression — The control string
string

The control string that controls the selection of the particular choice.

See Also
makeVariant | setActiveChoice | setCondition

Topics
“Create Variants”

Introduced in R2019a

1 Functions

1-48

getElement
Get the object a signal interface element

Syntax
element = getElement(interface,elementName)

Description
element = getElement(interface,elementName) gets the object for an element in a signal
interface.

Examples

Get the Object for a Named Element

Add an interface newinterface to the interface dictionary of the model and add an element with
type double to it. Then get the object for the element.

interface = addInterface(arch.InterfaceDictionary,'newsignal');
addElement(interface,'newelement','Type','double)
element = getElement(interface,'newsignal')
element =
 SignalElement with properties:

 Interface: [1×1 systemcomposer.interface.SignalInterface]
 Name: 'newelement2'
 Type: 'double'
 Dimensions: '1'
 Units: ''
 Complexity: 'real'
 Minimum: '[]'
 Maximum: '[]'
 Description: ''
 UUID: 'f42c8166-e4ad-4488-926a-293050016e1a'
 ExternalUID: ''

Input Arguments
interface — interface object
signal interface

The object handle to the element to be identified.
Data Types: systemcomposer.interface.SignalInterface

elementName — Name of the element to be identified
string
Data Types: char

 getElement

1-49

Output Arguments
element — new interface element object
signal element

See Also
addElement | getInterface | removeElement

Topics
“Define Interfaces”

Introduced in R2019a

1 Functions

1-50

getEvaluatedPropertyValue
Get evaluated value of property from component

Syntax
[value] = getEvaluatedPropertyValue(compObj,qualifiedPropName)

Description
[value] = getEvaluatedPropertyValue(compObj,qualifiedPropName) obtains the
evaluated value of a property specified on the component.

Input Arguments
compObj — Component to get the property value from
systemcomposer.arch.BaseComponent object

Component from which to obtain the property value, specified as a
systemcomposer.arch.BaseComponent object.

qualifiedPropName — Property name
string | character array

Qualified propery name, specified as a string or character array.

Output Arguments
value — Property value
any variable type

Value of the property.

See Also
getValue | setValue

Topics
“Write Analysis Function”

Introduced in R2019a

 getEvaluatedPropertyValue

1-51

getInterface
Get the object for a named interface in an interface dictionary

Syntax
interface = getInterface(dictionary,name)

Description
interface = getInterface(dictionary,name) gets the object for a named interface in the
interface dictionary.

Examples

Add an Interface

Add an interface newinterface to the interface dictionary of the model. Obtain the interface object

addInterface(arch.InterfaceDictionary,'newsignal')
iface = getInterface(arch.InterfaceDictionary,'newsignal')
iface =
 SignalInterface with properties:
 Dictionary: [1×1 systemcomposer.interface.Dictionary]
 Name: 'newsignal'
 Elements: [0×0 systemcomposer.interface.SignalElement]
 UUID: '438b5004-6cab-40eb-955b-37e0df5a914f'
 ExternalUID: ''

Input Arguments
dictionary — Data dictionary
systemcomposer.interface.Dictionary object

This is the data dictionary attached to the model. It could be the local dictionary of the model or an
external data dictionary.
Data Types: systemcomposer.interface.Dictionary

name — Name of the interface
string scalar | char array

Name of the interface specified as a string scalar or char array.
Data Types: string scalar | char array

Output Arguments
interface — Object for the interface
signal interface

1 Functions

1-52

Object for a named interface.

See Also
addElement | addInterface | removeElement

Topics
“Define Interfaces”

Introduced in R2019a

 getInterface

1-53

getInterfaceNames
Get the object for a named interface in an interface dictionary

Syntax
interfaceNames = getInterfaceNames(dictionary)

Description
interfaceNames = getInterfaceNames(dictionary) gets the names of all interfaces in the
interface dictionary.

Examples

Get Interface Names

interfaceNames = getInterfaceNames(arch.InterfaceDictionary)

Input Arguments
dictionary — Data dictionary
System Composer dictionary

Data dictionary attached to the model, specified as the local dictionary of the model or an external
data dictionary.
Data Types: systemcomposer.interface.Dictionary

Output Arguments
interfaceNames — interface names
array of interface names

Names of all the interfaces in the dictionary.

See Also
addInterface | getInterface | removeInterface

Topics
“Define Interfaces”

Introduced in R2019a

1 Functions

1-54

getPort
Get the port from a component

Syntax
port = getPort(compObj,portName)

Description
port = getPort(compObj,portName) gets the port on this component with a specified name.

Input Arguments
compObj — Component to get the port from
systemcomposer.arch.BaseComponent object

Component from which to get the port, specified as a systemcomposer.arch.BaseComponent
object.

portName — Name of the port to find
string | character array

Name of the port to find, specified as a string or character array.

Output Arguments
port — Port of this component
component port

Port of the component.

See Also
addElement | getElement | getInterface | removeElement

Introduced in R2019a

 getPort

1-55

getProperty
Get the property value corresponding to a stereotype applied to the element

Syntax
[propertyValue,propertyUnits] = getProperty(element,propertyName)

Description
[propertyValue,propertyUnits] = getProperty(element,propertyName) obtains the
value and units of the property specified in the propertyName argument. Get the property
corresponding to an applied stereotype by qualified name <stereotype>.<property> .

Examples

Get a Property from a Component

Get the weight property from a component with sysComponent stereotype applied.

>> [val, units] = getProperty(element,'sysComponent.weight')
val =
 '0'
units =
 'kg'

Input Arguments
element — Architecture model element
architecture component | architecture port | architecture connector

This function gets the specified property of this element. A stereotype with the property must be
applied to the element.
Data Types: systemcomposer.arch.Element | systemcomposer.arch.Architecture |
systemcomposer.arch.Component | systemcomposer.arch.Port

propertyName — Name of the property
string

The property name must be qualified with the stereotype name, in the form
'<stereotype>.<property>'.
Data Types: char

Output Arguments
propertyValue — Value of the property
string | number | enumeration
Data Types: char

1 Functions

1-56

propertyUnits — Unit of the property
string
Data Types: char

See Also
setProperty

Topics
“Set Tags and Properties for Analysis”

Introduced in R2019a

 getProperty

1-57

getStereotypes
Get the stereotypes applied on the element

Syntax
stereotypes = getStereotypes(element)

Description
stereotypes = getStereotypes(element) gets an array of fully qualified stereotype names
that have been applied on the element.

Examples

Get Stereotypes

stypes = getStereotypes(component_handle)

Input Arguments
element — Model element
component | port | connector

This is the element of which stereotypes are queried.
Data Types: systemcomposer.arch.Element

Output Arguments
stereotypes — list of stereotypes
cell array of stereotypes

See Also
applyStereotype | removeStereotype

Topics
“Use Stereotypes and Profiles”

Introduced in R2019a

1 Functions

1-58

getValue
Get value of a property from an element instance

Syntax
[value,unit] = getValue(instance,property)

Description
[value,unit] = getValue(instance,property) obtains the property of the instance and
assigns it to value. This function is part of the instance API that you can use to analyze the model
iteratively, element by element.instance refers to the element instance on which the iteration is
being performed.

Examples

Get the Weight Property

Assume that a MechComponent stereotype is attached to the specification of the instance.

weightValue = getValue(instance,'MechComponent.weight');

Input Arguments
instance — The element instance
architecture instance | component instance | port instance | connector instance

This function is part of the instance API that you can use to analyze the model iteratively, element by
element.instance refers to the element instance on which the iteration is being performed.
Data Types: systemcomposer.analysis.ArchitectureInstance |
systemcomposer.analysis.ComponentInstance |
systemcomposer.analysis.PortInstance |
systemcomposer.analysis.ConnectorInstance

property — The property field
stereotype.property

String in the form <stereotype>.<property>.
Data Types: string

Output Arguments
value — Property value
any variable type

Value of the property. The data type depends on how the property is defined in the profile.

 getValue

1-59

unit — Property unit
string

String that describe the unit of the property as defined in the profile.

See Also
setValue

Topics
“Write Analysis Function”

Introduced in R2019a

1 Functions

1-60

HasStereotype
Package: systemcomposer.query

Create a query to select architecture elements that have a stereotype based on the specified
subconstraint

Syntax
query = HasStereotype(subconstraint)

Description
query = HasStereotype(subconstraint) creates a query object that the
systemcomposer.arch.Model.find method and the
systemcomposer.arch.Model.createViewArchitecture method use to select architecture
elements with a stereotype that satisfies the given subconstraint.

Examples

Construct a Query to Select All Hardware Components

Select all of the hardware components in an architecture model.

Import the package that contains all of the System Composer queries.

import systemcomposer.query.*;

Open the Simulink project file.

scKeylessEntrySystem

Run the query.
hwCompQuery = HasStereotype(IsStereotypeDerivedFrom("AutoProfile.HardwareComponent"))

HasStereotype with properties:

 AllowedParentConstraints: {[1×1 meta.class]}
 SubConstraint: [1×1 systemcomposer.query.IsStereotypeDerivedFrom]
 SkipValidation: 0

Input Arguments
subconstraint — Condition
string

Condition restricting the query, specified as a string.
Example: IsStereotypeDerivedFrom

 HasStereotype

1-61

Output Arguments
query — Query object
systemcomposer.query object

Query.

See Also
find | systemcomposer.arch.Model

Topics
“Creating Architectural Views Programmatically”

Introduced in R2019b

1 Functions

1-62

systemcomposer.importModel
Import model information from MATLAB tables

Syntax
archModel = systemcomposer.importModel(modelName,components,ports,
connections)

Description
archModel = systemcomposer.importModel(modelName,components,ports,
connections) creates a new architecture model based on MATLAB tables that specify components,
ports, and connections.

Input Arguments
modelName — Name of model to be created
string
Example: 'importedModel'
Data Types: char | string

components — Component information
MATLAB table

Model components listed in a table created in MATLAB. The component table must include name,
unique ID, and parent component ID for each component. It can also include other relevant
information such as referenced model, stereotype qualifier name, and so on, required to construct the
architecture hierarchy.
Data Types: table

ports — Port information
MATLAB table

Model ports listed in a table created in MATLAB. The ports table must include port name, direction,
component, and port ID information. Port interface information may also be required to assign ports
to components..
Data Types: table

connections — Connections information
MATLAB table

Model connections listed in a table created in MATLAB. The ports table must include port name,
direction, component, and port ID information. Port interface information may also be required to
assign ports to components..
Data Types: table

 systemcomposer.importModel

1-63

Output Arguments
archModel — Handle to the architecture model
architecture object

Handle to the architecture model, specified as an architecture object.

Examples

Import and Export Architectures

This example shows how to import and export Architectures. In System Composer, an architecture is
fully defined by three sets of information:

• Component information
• Port information
• Connection information

You can import an architecture into System Composer when this information is defined in, or
converted into, MATLAB tables.

In this example, the architecture information of a simple UAV system is defined in an Excel
spreadsheet and is used to create a System Composer architecture model. You can modify the files in
this example to import architectures defined in external tools, when the data includes the required
information. The example also shows how to export this architecture information from System
Composer architecture model to an Excel spreadsheet.

Architecture Definition Data

You can characterize the architecture as a network of components and import by defining
components, ports, connections, and interfaces in MATLAB tables. The component table must include
name, unique ID, and parent component ID for each component. It can also include other relevant
information such as referenced model, stereotype qualifier name and so on. required to construct the
architecture hierarchy. The port table must include port name, direction, component, and port ID
information. Port interface information may also be required to assign ports to components. The
connection table includes information to connect ports. This includes, at a minimum, connection ID,
source port ID, and destination port ID.

The systemcomposer.importModel(importModelName) API :

• Reads stereotype names from Component table and load the profiles

• Creates components and attach ports

• Creates connections using the connection map

• Saves referenced models

• Saves the architecture model

Make sure the current directory is writable because this example will be creating files.

[stat, fa] = fileattrib(pwd);
if ~fa.UserWrite

1 Functions

1-64

 disp('This script must be run in a writable directory');
 return;
end
% Instantiate adapter class to read from Excel.
modelName = 'simpleUAVArchitecture';
% importModelFromExcel function reads the Excel file and creates the MATLAB
% tables.
importAdapter = ImportModelFromExcel('SmallUAVModel.xls','Components','Ports','Connections','PortInterfaces');
importAdapter.readTableFromExcel();

Import an Architecture

model = systemcomposer.importModel(modelName,importAdapter.Components,importAdapter.Ports,importAdapter.Connections,importAdapter.Interfaces);
% Auto-arrange blocks in the generated model
Simulink.BlockDiagram.arrangeSystem(modelName);

Export an Architecture

You can export an architecture to MATLAB tables and then convert to an external file

exportedSet = systemcomposer.exportModel(modelName);
% The output of the function is a structure that contains the component table, port table,
% connection table, and the interface table.
% Save the above structure to excel file.
SaveToExcel('ExportedUAVModel',exportedSet);

Close Model

bdclose(modelName);

See Also
systemcomposer.exportModel

 systemcomposer.importModel

1-65

Topics
“Importing and Exporting Architecture Models”

Introduced in R2019a

1 Functions

1-66

inlineComponent
Inline reference architecture into model

Syntax
componentHandle = inlineComponent(component,inlineFlag)

Description
componentHandle = inlineComponent(component,inlineFlag) inlines the contents of the
architecture model referenced by the specified component and breaks the link to the reference
model. If inlineFlag is false, then the contents are removed and only interfaces remain.

Examples

Reuse a Component

Save the component robotcomp in the architecture model Robot.slx and reference it from another
component, robotArm so that robotArm uses the architecture of robotcomp. Inline robotcomp so
that its architecture can be edited independently.

saveAsModel(robotcomp,'Robot');
linkToModel(robotArm, 'Robot');
inlineComponent(robotArm,true);

Input Arguments
component — Architecture component
architecture component

The component must be linked to an architecture model.
Data Types: systemcomposer.arch.Component

inlineFlag — control the contents of the inlined component
true | false

If true, contents of the referenced architecture model are copied to the component architecture. If
false, the contents are not copied, only ports and interfaces are inlined.
Data Types: char

Output Arguments
componentHandle — Component object
architecture component

See Also
saveAsModel

 inlineComponent

1-67

Topics
“Decompose and Reuse Components”

Introduced in R2019a

1 Functions

1-68

instantiate
Create an analysis instance from a specification

Syntax
instance = instantiate(model,properties,name)

Description
instance = instantiate(model,properties,name) creates an instance of a model for
analysis.

Examples

Instantiate All Properties of a Stereotype

Instantiate all properties of a stereotype that will be applied to specific elements during instantiation.

 NodeLatency = struct('elementKinds',["Component"]);
 ConnectorLatency = struct('elementKinds',["Connector"]);
 LatencyBase = struct('elementKinds',["Connector","Port","Component"]);
 PortLatency = struct('elementKinds',["Port"]);

 LatencyAnalysis = struct('NodeLatency',NodeLatency, ...
 'ConnectorLatency',ConnectorLatency, ...
 'PortLatency',PortLatency, ...
 'LatencyBase',LatencyBase);

properties = struct('LatencyProfile',LatencyAnalysis);
instantiate(<model>,properties, name)

Instantiate Specific Properties of a Stereotype

Instantiate specific properties of a stereotype that will be applied to specific elements during
instantiation.

 NodeLatency = struct('elementKinds',["Component"], ...
 'properties',struct('resources',true));
 ConnectorLatency = struct('elementKinds',["Connector"], ...
 'properties',struct('secure',true,'linkDistance',true));
 LatencyBase = struct('elementKinds',[], ...
 'properties',struct('dataRate',true,'latency',false));
 PortLatency = struct('elementKinds',["Port"], ...
 'properties',struct('queueDepth',true));

 LatencyAnalysis = struct('NodeLatency',NodeLatency, ...
 'ConnectorLatency',ConnectorLatency, ...
 'PortLatency',PortLatency, ...
 'LatencyBase',LatencyBase);

 instantiate

1-69

properties = struct('LatencyProfile',LatencyAnalysis);
instantiate(<model>,properties, name)

Input Arguments
model — Model
systemcomposer.arch.Model object

Model from which instance is generated, specified as a systemcomposer.arch.Model object.

properties — Stereotype properties
struct

Structure containing profile, stereotype, and property information through which the user can specify
which stereotypes and properties need to be instantiated

name — Name of the instance
string

Name given to the instance generated from the model.

Output Arguments
instance — Element instance
architecture instance | component instance | port instance | connector instance

This function is part of the instance API that you can use to analyze the model iteratively, element by
element.instance refers to the element instance on which the iteration is being performed.
Data Types: systemcomposer.analysis.ArchitectureInstance

See Also
deleteInstance | loadInstance | saveInstance

Topics
“Write Analysis Function”

Introduced in R2019a

1 Functions

1-70

isArchitecture
Find if an instance is an architecture instance

Syntax
flag = isArchitecture(instance)

Description
flag = isArchitecture(instance) finds whether the instance is an architecture instance.

Input Arguments
instance — Element instance
architecture instance | component instance | port instance | connector instance

This function is part of the instance API that you can use to analyze the model iteratively, element by
element.instance refers to the element instance on which the iteration is being performed.
Data Types: systemcomposer.analysis.ArchitectureInstance |
systemcomposer.analysis.ComponentInstance |
systemcomposer.analysis.PortInstance |
systemcomposer.analysis.ConnectorInstance

Output Arguments
flag — Indicate if the instance is an architecture
boolean

This argument is true if the instance is an architecture.

See Also
isComponent | isConnector | isPort

Topics
“Write Analysis Function”

Introduced in R2019a

 isArchitecture

1-71

isComponent
Find if an instance is a component instance

Syntax
flag = isComponent(instance)

Description
flag = isComponent(instance) finds whether the instance is a component instance.

Input Arguments
instance — The element instance
architecture instance | component instance | port instance | connector instance

This function is part of the instance API that you can use to analyze the model iteratively, element by
element.instance refers to the element instance on which the iteration is being performed.
Data Types: systemcomposer.analysis.ArchitectureInstance |
systemcomposer.analysis.ComponentInstance |
systemcomposer.analysis.PortInstance |
systemcomposer.analysis.ConnectorInstance

Output Arguments
flag — Indicate if the instance is a component
boolean

This argument is true if the instance is a component.

See Also
isArchitecture | isConnector | isPort

Topics
“Write Analysis Function”

Introduced in R2019a

1 Functions

1-72

isConnector
Find if an instance is a connector instance

Syntax
flag = isConnector(instance)

Description
flag = isConnector(instance) finds whether the instance is a connector instance.

Input Arguments
instance — The element instance
architecture instance | component instance | port instance | connector instance

This function is part of the instance API that you can use to analyze the model iteratively, element by
element.instance refers to the element instance on which the iteration is being performed.
Data Types: systemcomposer.analysis.ArchitectureInstance |
systemcomposer.analysis.ComponentInstance |
systemcomposer.analysis.PortInstance |
systemcomposer.analysis.ConnectorInstance

Output Arguments
flag — Indicate if the instance is a connector
boolean

This argument is true if the instance is a connector.

See Also
isArchitecture | isComponent | isPort

Topics
“Write Analysis Function”

Introduced in R2019a

 isConnector

1-73

isPort
Find if an instance is a port instance

Syntax
flag = isPort(instance)

Description
flag = isPort(instance) finds whether the instance is a port instance.

Input Arguments
instance — The element instance
architecture instance | component instance | port instance | connector instance

This function is part of the instance API that you can use to analyze the model iteratively, element by
element.instance refers to the element instance on which the iteration is being performed.
Data Types: systemcomposer.analysis.ArchitectureInstance |
systemcomposer.analysis.ComponentInstance |
systemcomposer.analysis.PortInstance |
systemcomposer.analysis.ConnectorInstance

Output Arguments
flag — Indicate if the instance is a port
boolean

This argument is true if the instance is a port.

See Also
isArchitecture | isConnector

Topics
“Write Analysis Function”

Introduced in R2019a

1 Functions

1-74

isReference
Find if a component is a is a reference to another model

Syntax
isRef = isReference(compObj)

Description
isRef = isReference(compObj) returns whether or not the component is a reference to another
model.

Input Arguments
compObj — Component to get the port from
systemcomposer.arch.BaseComponent object | component instance | port instance | connector
instance

Component from which to get the port, specified as a systemcomposer.arch.BaseComponent
object.

Output Arguments
isRef — Indicate if the component is a reference
boolean

This argument is true if the component is a reference.

See Also
Topics
“Write Analysis Function”

Introduced in R2019a

 isReference

1-75

iterate
Iterate over model elements

Syntax
iterate(architecture,iterType,iterFunction)
iterate(architecture,iterType,iterFunction,'Recurse',false)
iterate(architecture,iterType,iterFunction,'IncludePorts',true)
iterate(architecture,iterType,iterFunction,'FollowConnectivity',true)
iterate(architecture,iterType,iterFunction,additionalArgs)

Description
iterate(architecture,iterType,iterFunction)iterates over components in the architecture
in the order specified by iterType and invokes the function specified by the function handle
iterFunction on each component.

iterate(architecture,iterType,iterFunction,'Recurse',false) iterates over
components only in this architecture and does not navigate into the architectures of child
components.

iterate(architecture,iterType,iterFunction,'IncludePorts',true) iterates over
components and architecture ports.

iterate(architecture,iterType,iterFunction,'FollowConnectivity',true) ensures
components are visited according to how they are connected from source to destination. If this option
is specified, iteration type has to be either 'TopDown' or 'BottomUp'. If any other option is specified,
iteration defaults to 'TopDown'.

iterate(architecture,iterType,iterFunction,additionalArgs) passes all trailing
arguments as arguments to iterFunction.

Examples

Battery Capacity Computation

Open the example “Battery Sizing and Automotive Electrical System Analysis”.

archModel = systemcomposer.openModel('scExampleAutomotiveElectricalSystemAnalysis');
% Instantiate Battery sizing class used by analysis function to stores
% analysis results.
objcomputeBatterySizing = computeBatterySizing;
% Run the analysis using the iterator
archModel.iterate('Topdown',@computeLoad,objcomputeBatterySizing);

Input Arguments
architecture — Architecture to iterate over
architecture

1 Functions

1-76

The iteration type traverses elements in 'depth-first pre-order', 'depth-first post-order', 'breadth-first
top-down', or 'breadth-first bottom-up' order.
Data Types: systemcomposer.arch.Architecture

iterType — Iteration type
'PreOrder' | 'PostOrder' | 'TopDown' | 'BottomUp'

The iteration type traverses elements in 'depth-first pre-order', 'depth-first post-order', 'breadth-first
top-down', or 'breadth-first bottom-up' order.
Data Types: char

iterFunction — Iteration function
function handle

Handle to the function to be iterated on each component.
Data Types: string

additionalArgs — Additional function arguments
function argument

Comma separated list of arguments to be passed to iterFunction

See Also
Topics
“Analyze Architecture”

Introduced in R2019a

 iterate

1-77

linkDictionary
Package: systemcomposer.arch

Link data dictionary to an architecture model

Syntax
linkDictionary(obj,dictionaryFile)

Description
linkDictionary(obj,dictionaryFile) associates the specified Simulink data dictionary with
the model.

Input Arguments
obj — Architecture model object
systemcomposer.arch.Model object

dictionaryFile — Dictionary file name
string

Dictionary file name with the .sldd extension.

See Also
getInterfaces | systemcomposer.createDictionary

Topics
“Save and Link Interfaces”

Introduced in R2019a

1 Functions

1-78

linkToModel
Link component to a model

Syntax
modelHandle = linktoModel(component,modelName)

Description
modelHandle = linktoModel(component,modelName) links from the component to a model.

Examples

Reuse a Component

Save the component robotcomp in the architecture model Robot.slx and reference it from another
component, robotArm so that robotArm uses the architecture of robotcomp.

saveAsModel(robotcomp,'Robot');
linkToModel(robotArm, 'Robot');

Input Arguments
component — Architecture component
architecture component

The component must have no children.
Data Types: systemcomposer.arch.Component

modelName — Model name
string

An existing model that define the architecture or behavior of the component.
Data Types: char

Output Arguments
modelHandle — Handle to the linked model
numeric handle

See Also
inlineComponent

Topics
“Decompose and Reuse Components”

 linkToModel

1-79

Introduced in R2019a

1 Functions

1-80

loadInstance
Load an architecture instance

Syntax
loadInstance(fileName,overwrite)

Description
loadInstance(fileName,overwrite) loads an architecture instance from a MAT-file.

Input Arguments
fileName — File that contains an architecture instance
string

This is a MAT-file that was previously saved with an architecture instance.

overwrite — Whether to overwrite an instance if it already exists in the workspace
1 | 0

If true, the load operation overwrites duplicate instances in the workspace.

See Also
deleteInstance | saveInstance | updateInstance

Topics
“Write Analysis Function”

Introduced in R2019a

 loadInstance

1-81

loadModel
Load architecture model

Syntax
model = systemcomposer.loadModel(modelName)

Description
model = systemcomposer.loadModel(modelName) loads the model with name modelNameand
returns its handle. The loaded model is not displayed.

Input Arguments
modelName — Name of model
string

Model must exist on the MATLAB path.
Example: 'new_arch'
Data Types: char | string

Output Arguments
model — Model handle
Model object

Examples
systemcomposer.loadModel('new_arch')
model = systemcomposer.loadModel('new_arch')

See Also
open | save

Topics
“Create an Architecture Model”

Introduced in R2019a

1 Functions

1-82

systemcomposer.loadProfile
Load profile

Syntax
profile = systemcomposer.loadProfile(profileName)

Description
profile = systemcomposer.loadProfile(profileName) loads a profile with the specified file
name

Input Arguments
profileName — Name of new profile
string

Profile must be available on the MATLAB path.
Example: 'new_profile'
Data Types: char | string

Output Arguments
profile — Profile handle
Profile object

Examples
systemcomposer.loadProfile('new_profile')
profile = systemcomposer.loadProfile('new_profile')

See Also
applyProfile

Topics
“Define Profiles and Stereotypes”

Introduced in R2019a

 systemcomposer.loadProfile

1-83

lookup
Package: systemcomposer.arch

Look up an architecture element

Syntax
e = lookup(obj,nameValPair)

Description
e = lookup(obj,nameValPair) finds an architecture element based in its UUID or full path.

Examples

Look Up a Component by Path

>> lookup(arch,'Path','RobotSystem/Sensors')

ans =

 Component with properties:

 Name: 'Sensors'
 Parent: [1×1 systemcomposer.arch.Architecture]
 Ports: [1×2 systemcomposer.arch.ComponentPort]
 OwnedPorts: []
 Architecture: [1×1 systemcomposer.arch.Architecture]
 OwnedArchitecture: []
 Position: [275 75 391 161]
 Model: [1×1 systemcomposer.arch.Model]
 UUID: 'f43c9d51-9dc6-43fc-b3af-95d458b81248'
 SimulinkHandle: 9.0002
 SimulinkModelHandle: 2.0002
 ExternalUID: ''

Input Arguments
obj — Architecture model object
systemcomposer.arch.Model object

Model object to look up using the UUID.

nameValPair — Name-value pair
‘UUID’,uuidVal | ‘SimulinkHandle’,slhdl | 'Path',pathVal

• ‘UUID’,uuidVal — Uses lookup to find any model element by UUID.
• ‘SimulinkHandle’,slhdl — Uses lookup to find any model element by Simulink handle.

1 Functions

1-84

• 'Path',pathVal — Uses lookup to find components by path.

Output Arguments
e — Element objects
element object

Architecture element objects to look up using different keys.

See Also
instantiate

Topics
“Analyze Architecture”

Introduced in R2019a

 lookup

1-85

makeVariant
Convert component to a variant choice

Syntax
[variantComp,choices] = makeVariant(components)

Description
[variantComp,choices] = makeVariant(components) converts components to variant
choices and returns the parent component and available choices.

Input Arguments
components — Architecture components
array of components

Architecture components to be converted to variants.
Data Types: systemcomposer.arch.Component

Output Arguments
variantComp — Component containing the variants
component

Component that contains the variants.

choices — Variant choice names
cell array of strings

Choices available in the new variant.
Data Types: string

See Also
addChoice | getChoices

Topics
“Create Variants”

Introduced in R2019a

1 Functions

1-86

open
Package: systemcomposer.arch

Open System Composer model

Syntax
open(objModel)

Description
open(objModel) opens the specified model in System Composer.

open is a method for the class systemcomposer.arch.Model.

Examples

Create and Open a Model

Model = systemcomposer.createModel('modelName');
open(Model)

Input Arguments
objModel — Model to open in editor
Model object

Model to open in System Composer Editor, specified as a Model object.
Data Types: systemcomposer.arch.Model

See Also
createModel

Topics
“Create an Architecture Model”

Introduced in R2019a

 open

1-87

systemcomposer.openModel
Open a System Composer architecture model

Syntax
model = systemcomposer.openModel(modelName)

Description
model = systemcomposer.openModel(modelName) opens the model with name modelName for
editing and returns its handle.

Input Arguments
modelName — Name of new model
string

Model must exist on the MATLAB path.
Example: 'new_arch'
Data Types: char | string | Model

Output Arguments
model — Model handle
Model object

Examples
systemcomposer.openModel('new_arch')
model = systemcomposer.openModel('new_arch')

See Also
createModel | open

Topics
“Create an Architecture Model”

Introduced in R2019a

1 Functions

1-88

openViews
Open architecture views editor

Syntax
openViews(objModel)

Description
openViews(objModel) opens the architecture views editor for the specified model. If the model is
already open, openViews will bring the views to the front..

The method openViews is for the class systemcomposer.arch.Model.

Input Arguments
objModel — Name of a model
Model object (default)
Data Types: systemcomposer.arch.Model

See Also

Introduced in R2019b

 openViews

1-89

removeComponent
Package: systemcomposer.view

Remove a component from a view

Syntax
removeComponent(object, compObj, contextView)

Description
removeComponent(object, compObj, contextView) removes the component with the specified
path from the view given by the contextView parameter.

removeComponent is a method for the class systemcomposer.view.ViewArchitecture.

Input Arguments
object — View architecture object
systemcomposer.view.ViewArchitecture (default)

View architecture object.

compObj — <argument purpose>
<argument value> (default) | <argument value>

Path to the component including the name of the top-model.

contextView — <argument purpose>
systemcomposer.view.ViewArchitecture (default) | <argument value>

<argument description>

See Also

Introduced in R2019b

1 Functions

1-90

removeElement
Remove a signal interface element

Syntax
removeElement(interface,elementName)

Description
removeElement(interface,elementName) removes an element from a signal interface.

Examples

Add an Interface and an Element

Add an interface newinterface to the interface dictionary of the model and add an element with
type double to it, then remove the element.

interface = addInterface(arch.InterfaceDictionary,'newsignal');
element = addElement(interface,'newelement','Type','double);
removeElement(interface,'newsignal')

Input Arguments
interface — interface object
signal interface
Data Types: systemcomposer.interface.SignalInterface

elementName — Name of the element to be removed
String
Data Types: char

See Also
addElement | getElement

Topics
“Define Interfaces”

Introduced in R2019a

 removeElement

1-91

removeInterface
Remove a named interface from an interface dictionary

Syntax
removeInterface(dictionary,name)

Description
removeInterface(dictionary,name) removes a named interface from the interface dictionary.

Examples

Remove an Interface

Add an interface newinterface to the interface dictionary of the model and then remove it.

addInterface(arch.InterfaceDictionary,'newsignal')
removeInterface(arch.InterfaceDictionary,'newsignal')

Input Arguments
dictionary — Data dictionary attached to the architecture model
System Composer dictionary
Data Types: systemcomposer.interface.Dictionary

name — Name of the new interface
string
Data Types: char

See Also
addInterface | getInterface | getInterfaces

Topics
“Define Interfaces”

Introduced in R2019a

1 Functions

1-92

removeProfile
Remove profile from a model

Syntax
removeProfile(modelObject,profileFile)

Description
removeProfile(modelObject,profileFile) applies the profile to a model and makes all of the
constituent stereotypes available.

Examples

Remove a Profile

removeProfile(arch,'SystemProfile')

Input Arguments
modelObject — Architecture model object
architecture model
Data Types: systemcomposer.arch.Model

profileFile — Profile file
string

Name of a profile attached to the model.
Data Types: string

See Also
applyProfile | createProfile

Topics
“Define Profiles and Stereotypes”

Introduced in R2019a

 removeProfile

1-93

removeProperty
Remove a property from a stereotype

Syntax
removeProperty(stereotype,propertyName)

Description
removeProperty(stereotype,propertyName) removes a property from the stereotype.

Examples

Remove a Property

Add a component stereotype and add a VoltageRating property with value 5. Then remove the
property.

stype = addStereotype(profile,'electricalComponent','AppliesTo','Component')
property = addProperty(stype,'VoltageRating','DefaultValue','5');
removeProperty(stype,'VoltageRating');

Input Arguments
stereotype — Stereotype to which the property is added
stereotype

propertyName — Property to be removed
string

See Also
addProperty

Topics
“Define Profiles and Stereotypes”

Introduced in R2019a

1 Functions

1-94

removeStereotype
Remove a stereotype from a model element

Syntax
removeStereotype(element,stereotype)

Description
removeStereotype(element,stereotype) removes a stereotype from the mode element.
Removes the specified stereotype if already applied to a model element.

Input Arguments
element — Architecture model element
architecture component | architecture port | architecture connector

The stereotype and all its properties are removed from this element.
Data Types: systemcomposer.arch.Element

stereotype — Reference stereotype
stereotype

The stereotype must be specified in the form <profile>.<stereotype>.
Data Types: systemcomposer.internal.profile.Stereotype

See Also
applyStereotype

Topics
“Remove a Stereotype”

Introduced in R2019a

 removeStereotype

1-95

reparent
Move stereotype

Syntax
reparent(stereotype,parentStereotype)

Description
reparent(stereotype,parentStereotype) reparents the stereotype to the specified stereotype.

Examples

Reparent a Property

Add an architecture stereotype and reparent it to a component.

stype = addStereotype(profile,'electricalComponent','systemcomposer.Architecture','General electrical component')
reparent(stype,'systemcomposer.Component')

Input Arguments
stereotype — Stereotype whose inheritance changes
stereotype

parentStereotype — the new stereotype to inherit from
stereotype

See Also

Introduced in R2019a

1 Functions

1-96

save
Save the architecture model or data dictionary

Syntax
save(architecture)
save(dictionary)

Description
save(architecture) saves the architecture model to the file specified in its Name property.

save(dictionary) saves the data dictionary.

Examples

Save Model and Data Dictionary

save(arch);
save(arch.InterFaceDictionary);

Input Arguments
architecture — The architecture model
System Composer architecture
Data Types: systemcomposer.arch.Model

dictionary — Data dictionary attached to the architecture model
System Composer dictionary
Data Types: systemcomposer.interface.Dictionary

See Also
loadModel

Topics
“Create an Architecture Model”
“Save and Link Interfaces”

Introduced in R2019a

 save

1-97

saveAsModel
Save the Architecture to a separate model

Syntax
saveAsModel(component,modelName)

Description
saveAsModel(component,modelName) saves the architecture of the component to a separate
architecture model and references the model from this component.

Examples

Save a Component

Save the component robotcomp in Robot.slx and reference the model.

saveAsModel(robotcomp,'Robot');

Input Arguments
component — Architecture component
architecture component

The component must have an architecture with definition type composition. For other definition
types, this function gives an error.
Data Types: systemcomposer.arch.Component

modelName — Model name
string
Data Types: char

See Also
inlineComponent | linkToModel

Topics
“Decompose and Reuse Components”

Introduced in R2019a

1 Functions

1-98

saveInstance
Save an architecture instance

Syntax
saveInstance(architectureInstance,fileName)

Description
saveInstance(architectureInstance,fileName) saves an architecture instance to a MAT-file.

Input Arguments
architectureInstance — The architecture instance
architecture instance

The architecture instance to be saved.
Data Types: systemcomposer.analysis.ArchitectureInstance

fileName — File to save the instance
string

This is a MAT-file to save the architecture instance.

See Also
loadInstance

Topics
“Write Analysis Function”

Introduced in R2019a

 saveInstance

1-99

setActiveChoice
Set the active choice in the variant component

Syntax
setActiveChoice(variantComponent,choice)

Description
setActiveChoice(variantComponent,choice) sets the active choice on the variant component.

Input Arguments
variantComponent — Architecture component
component

Variant component with multiple choices.
Data Types: systemcomposer.arch.Component

choice — Choice in a variant component
component | string

The choice whose control string is returned by this function. This can be a component object or label
of the variant choice.
Data Types: systemcomposer.arch.Component | string

See Also
addChoice | getActiveChoice | getChoices

Topics
“Create Variants”

Introduced in R2019a

1 Functions

1-100

setCondition
Set the condition on the variant choice

Syntax
setCondition(variantComponent,choice, expression)

Description
setCondition(variantComponent,choice, expression) sets the variant control for a choice
for the variant component.

Input Arguments
variantComponent — Architecture component
component

Variant component with multiple choices.
Data Types: systemcomposer.arch.Component

choice — Choice in a variant component
component | string

The choice whose control string is set by this function.
Data Types: systemcomposer.arch.Component

expression — The control string
string

The control string that controls the selection of the choice.

See Also
getCondition | makeVariant | setActiveChoice

Topics
“Create Variants”

Introduced in R2019a

 setCondition

1-101

setDefaultComponentStereotype
Set the default stereotype for components

Syntax
= setDefaultComponentStereotype(S,stereotypeName)

Description
= setDefaultComponentStereotype(S,stereotypeName) specifies a stereotype for
components in the subcomposition of a component, to which stereotype S is applied.

Input Arguments
S — Stereotype object
systemcomposer.profile.Stereotype object

Stereotype of the parent component, specified as a systemcomposer.profile.Stereotype
object.

stereotypeName — Name of default stereotype
string

Name of the stereotype set on subcomponents, specified as a string.
Data Types: char

See Also
applyStereotype | removeStereotype

Topics
“Define Profiles and Stereotypes”

Introduced in R2019a

1 Functions

1-102

setDefaultConnectorStereotype
Set the default stereotype for connectors

Syntax
= setDefaultConnectorStereotype(S,stereotypeName)

Description
= setDefaultConnectorStereotype(S,stereotypeName) specifies a stereotype for connectors
in the subcomposition of a component, to which stereotype S is applied.

Input Arguments
S — Stereotype object
systemcomposer.profile.Stereotype object

Stereotype of the parent component, specified as a systemcomposer.profile.Stereotype
object.

stereotypeName — Name of default stereotype
string

Name of the stereotype set on connectors in the subcomposition, specified as a string.
Data Types: char

See Also
applyStereotype | removeStereotype

Topics
“Define Profiles and Stereotypes”

Introduced in R2019a

 setDefaultConnectorStereotype

1-103

setDefaultPortStereotype
Set the default stereotype for ports

Syntax
= setDefaultPortStereotype(S,stereotypeName)

Description
= setDefaultPortStereotype(S,stereotypeName) specifies a stereotype for ports in the
subcomposition of a component, to which stereotype S is applied.

Input Arguments
S — Stereotype object
systemcomposer.profile.Stereotype object

Stereotype of the parent component, specified as a systemcomposer.profile.Stereotype
object.

stereotypeName — Name of default stereotype
string

Name of the stereotype set on ports in the subcomposition, specified as a string.
Data Types: char

See Also
applyStereotype | removeStereotype

Topics
“Define Profiles and Stereotypes”

Introduced in R2019a

1 Functions

1-104

setProperty
Set the property value corresponding to a stereotype applied to the element

Syntax
setProperty(element,propertyName,propertyValue,propertyUnits)

Description
setProperty(element,propertyName,propertyValue,propertyUnits) sets the value and
units of the property specified in the propertyName argument. Set the property corresponding to an
applied stereotype by qualified name <stereotype>.<property> . This is the verbose approach to
setting a property.

Examples

Apply a Stereotype and Set Numeric Property Value

In this example, weight is a property of the stereotype sysComponent.

applyStereotype(element,'sysProfile.sysComponent')
setProperty(element,'sysComponent.weight','5','g')

Apply a Stereotype and Set String Property Value

In this example, description is a property of the stereotype sysComponent.

expression = sprintf("'%s'",'component description')
setProperty(element,'sysComponent.description',expression)

Input Arguments
element — Architecture model element
architecture component | architecture port | architecture connector
Data Types: systemcomposer.arch.Element

propertyName — Name of the property
stereotype.property

Qualified name of the property in the form '<stereotype>.<property>'.
Data Types: char

propertyValue — Value of the property
string

Specify numeric values in single quotes. Specify string values in the sprintf("'%s'",'<property
value>') form. See example on this page.

 setProperty

1-105

Data Types: char

propertyUnits — Units of the property
string

Specify the units to interpret property values.
Data Types: char

See Also
getProperty

Topics
“Set Tags and Properties for Analysis”

Introduced in R2019a

1 Functions

1-106

setValue
Set the value of a property for an element instance

Syntax
setValue(instance,property,value)

Description
setValue(instance,property,value) sets the property of the instance to value. This
function is part of the instance API that you can use to analyze the model iteratively, element by
element.instance refers to the element instance on which the iteration is being performed.

Examples

Set the Weight Property

Assume that a MechComponent stereotype is attached to the specification of the instance.

setValue(instance,'MechComponent.weight',10);

Input Arguments
instance — The element instance
architecture instance | component instance | port instance | connector instance

This function is part of the instance API that you can use to analyze the model iteratively, element by
element.instance refers to the element instance on which the iteration is being performed.
Data Types: systemcomposer.analysis.ArchitectureInstance |
systemcomposer.analysis.ComponentInstance |
systemcomposer.analysis.PortInstance |
systemcomposer.analysis.ConnectorInstance

property — The property field
stereotype.property

String in the form <stereotype>.<property>.
Data Types: string

See Also
getValue

Topics
“Write Analysis Function”

Introduced in R2019a

 setValue

1-107

unlinkDictionary
Unlink dictionary from a model

Syntax
unlinkDictionary(modelObject)

Description
unlinkDictionary(modelObject) removes the association of the model from its data dictionary.

Examples
Unlink the Data Dictionary

unlinkDictionary(arch);

Input Arguments
modelObject — Architecture model object
architecture

The model from which the dictionary link is to be removed.
Data Types: systemcomposer.arch.Model

See Also
linkDictionary

Topics
“Save and Link Interfaces”

Introduced in R2019a

1 Functions

1-108

updateInstance
Update an architecture instance

Syntax
updateInstance(architectureInstance,updateFlag)

Description
updateInstance(architectureInstance,updateFlag) updates an instance to mirror the
changes in the specification model.

Input Arguments
architectureInstance — The architecture instance
architecture instance

The architecture instance to be updated.
Data Types: systemcomposer.analysis.ArchitectureInstance

updateFlag — whether to update values changed directly in the model
1 | 0

If true, the method reflects changes made directly in the specification model to the instance model.

See Also
loadInstance | saveInstance

Topics
“Write Analysis Function”

Introduced in R2019a

 updateInstance

1-109

Classes

2

systemcomposer.analysis.Instance
Class that represents an architecture model element in an analysis instance

Description
The Instance class represents an instance of an architecture.

Creation
Create an instance of an architecture

instance = instantiate(modelHandle,architecture,properties,name)

Properties
Name — Name of the instance
string

This is the name of the instance.
Data Types: char

Specification — The specification that the instance is created from
architecture | component | port | connector

Every instance has a specification from which it took its form. The kind of the specification depends
on the kind of the instance.
Data Types: systemcomposer.arch.Architecture | systemcomposer.arch.Component |
systemcomposer.arch.Port | systemcomposer.arch.Connector

Architecture Instance Properties

Components — Child components of the instance
array of components

The components within the architecture.
Data Types: systemcomposer.analysis.ComponentInstance

Ports — Ports of the architecture instance
array of ports

These are the architecture ports that belong to the architecture instance.
Data Types: systemcomposer.analysis.PortInstance

Connectors — Connectors in the architecture instance
array of connectors

These are the connectors within the architecture, connecting child components.

2 Classes

2-2

Data Types: systemcomposer.analysis.Connectors

Component Instance Properties

Components — Child components of the instance
array of components

The components within the architecture.
Data Types: systemcomposer.analysis.ComponentInstance

Ports — Ports of the architecture instance
array of ports

These are the architecture ports that belong to the architecture instance.
Data Types: systemcomposer.analysis.PortInstance

Connectors — Connectors in the architecture instance
array of connectors

These are the connectors within the architecture, connecting child components.
Data Types: systemcomposer.analysis.Connectors

Parent — Parent of the component
component

The architecture that contains the component
Data Types: systemcomposer.analysis.Architecture

Port Instance Properties

Parent — Parent of the port
component

The component that contains the port
Data Types: systemcomposer.analysis.Component

Connector Instance Properties

Parent — Parent of the connector
component

The component that contains the connector
Data Types: systemcomposer.analysis.Component

SourcePort — Source port
port

The port from which the connector originates.
Data Types: systemcomposer.analysis.Port

DestinationPort — Destination port
port

 systemcomposer.analysis.Instance

2-3

The port from which the connector ends.
Data Types: systemcomposer.analysis.Port

Object Functions
deleteInstance Delete an architecture instance
getValue Get value of a property from an element instance
instantiate Create an analysis instance from a specification
isArchitecture Find if an instance is an architecture instance
isComponent Find if an instance is a component instance
isConnector Find if an instance is a connector instance
isPort Find if an instance is a port instance
loadInstance Load an architecture instance
saveInstance Save an architecture instance
setValue Set the value of a property for an element instance
updateInstance Update an architecture instance

See Also
Topics
“Write Analysis Function”

Introduced in R2019a

2 Classes

2-4

systemcomposer.arch.Architecture
Class that represents an architecture in an architecture model

Description
The Architecture class represents an architecture in the model. This class inherits from
systemcomposer.base.BaseElement and implements the interface
systemcomposer.base.BaseArchitecture.

Creation
Create an model and get the root architecture:

model = systemcomposer.createModel('archModel');
arch=get(model,'Architecture')

Properties
Name — Name of the architecture
character vector

The architecture name is derived from the parent component or model name to which the
architecture belongs.
Example: 'system_architecture'

Definition — Definition type of the architecture
Composition | Behavior | View

The definition type can be a composition, a behavior model, or a view.
Example: Composition
Data Types: ArchitectureDefinition enum

Parent — Handle to the parent component that owns this Architecture
systemcomposer.arch.Component object

Components — Array of handles to the set of child components of this architecture
array of systemcomposer.arch.Component objects

Ports — Array of architecture ports of this architecture
array of systemcomposer.arch.ArchitecturePort objects

Connectors — Array of connectors that either interconnect child components or connect
child components to architecture ports
array of systemcomposer.arch.Connector objects

 systemcomposer.arch.Architecture

2-5

Object Functions
addComponent Add a component to the architecture
addVariantComponent Add a component to the architecture
addPort Add ports to architecture
connect Connect pairs of components

See Also
systemcomposer.arch.Component

Topics
“Create an Architecture Model”

Introduced in R2019a

2 Classes

2-6

systemcomposer.arch.ArchitecturePort
Represent input and output ports of an architecture

Description
This class inherits from systemcomposer.arch.BasePort .

Creation
port = addPort(archObj,'in')

The addPort method is the constructor for the systemcomposer.arch.ArchitecturePort class.

Properties
Direction — Port direction
input | output

Direction of the port, specified as input or output.

InterfaceName — Interface name
string

Name of the interface associated with this port, specified as a string.

Interface — Interface
systemcomposer.internal.SignalInterface object

Interface associated with this port specified as a systemcomposer.internal.SignalInterface
object.

Connectors — Connectors
systemcomposer.arch.Connector object

Connectors associated with this port specified as a systemcomposer.arch.Connector object.

Connected — If the port already has connections
logical

Whether the port already has connections, specified as logical.

Parent — Architecture that owns this port
systemcomposer.arch.Architecture object

Architecture that owns this port, specified as a systemcomposer.arch.Architecture object.

 systemcomposer.arch.ArchitecturePort

2-7

Object Functions
connect Connect pairs of components
setName
setInterface
createAnonymousInterface
applyStereotype Apply a stereotype to a model element
destroy Remove and destroy a model element

See Also
Topics
“Create an Architecture Model”

Introduced in R2019a

2 Classes

2-8

systemcomposer.arch.BaseComponent
Common base class for all components in an architecture model

Description
A systemcomposer.arch.BaseComponent cannot be constructed. Either create a
systemcomposer.arch.Component or systemcomposer.arch.VariantComponent.

Properties
Parent — Architecture that owns this component
systemcomposer.arch.Architecture object

Architecture that owns this component, specified as a systemcomposer.arch.Architecture
object.

Ports — Input and output ports of this component
systemcomposer.arch.ComponentPort object

Input and output ports of this component, specified as a systemcomposer.arch.ComponentPort
object.

OwnedArchitecture — Architecture directly owned by this component
systemcomposer.arch.Architecture object

Architecture directly owned by this component, specified as a
systemcomposer.arch.Architecture object.

Position — Position of component on canvas
vector of coordinates in pixels

Position of the component on the canvas, specified as a vector of coordinates, in pixels [left top
right bottom].

Object Functions
getStereotypes Get the stereotypes applied on the element
getProperty Get the property value corresponding to a stereotype applied to the

element
setProperty Set the property value corresponding to a stereotype applied to the

element
getEvaluatedPropertyValue Get evaluated value of property from component
isReference Find if an instance is a port instance
getPort Get the object a signal interface element
applyStereotype Apply a stereotype to a model element
connect Connect pairs of components

 systemcomposer.arch.BaseComponent

2-9

See Also

Introduced in R2019b

2 Classes

2-10

systemcomposer.arch.BasePort
Common base class for all ports in an architecture model

Description
A systemcomposer.arch.Baseport cannot be constructed. Create a
systemcomposer.arch.ArchitecturePort.

Properties
Direction — Port direction
'Input' | 'Output'

Direction of the port.

InterfaceName — Name of interface
string

Name of the interface associated with this port.

Interface — Interface associated with this port
systemcomposer.internal.SignalInterface object

Interface associated with this port, specified as a systemcomposer.internal.SignalInterface
object.

Connectors — Connectors of this port
systemcomposer.arch.Connector object

Connectors of this port, specified as a systemcomposer.arch.Connector object.

Connected — If port already has connections
logical

If the port already has connections, specified as logical.

Object Functions
applyStereotype Apply a stereotype to a model element
getStereotypes Get the stereotypes applied on the element
getProperty Get the property value corresponding to a stereotype applied to the

element
setProperty Set the property value corresponding to a stereotype applied to the

element
getEvaluatedPropertyValue Get evaluated value of property from component

See Also
systemcomposer.arch.Element

 systemcomposer.arch.BasePort

2-11

Topics
“Ports”

Introduced in R2019a

2 Classes

2-12

systemcomposer.arch.Component
Class that represents a component or view component

Description
The Component class represents a component in the architecture model. This class inherits from
systemcomposer.arch.BaseComponent.

Creation
Create a component in an architecture model:

model = systemcomposer.createModel('archModel');
arch=get(model,'Architecture');
component = addComponent(arch,'NewComponent');

Properties
ParentArchitecture — Handle to the parent component that owns this component
Architecture object
Data Types: systemcomposer.arch.Architecture

Architecture — Architecture that defines the component structure
Architecture object

For a component that references a different architecture model, this returns a handle to the root
architecture of that model. For variant components, the architecture is that of the active variant.
Data Types: systemcomposer.arch.Architecture

OwnedArchitecture — The architecture that this component directly owns
architecture

For components that reference an architecture, this is be empty. For variant components , this is the
architecture in which the individual variant components reside.
Data Types: systemcomposer.arch.Architecture

Ports — Array of component ports
array of ports
Data Types: systemcomposer.arch.ComponentPort

OwnedPorts — Array of component ports
array of ports

For all components except Variant View components, this will return the same value as Ports. For
Variant View components, this returns the aggregate of all ports across all Views in which this
component is present.

 systemcomposer.arch.Component

2-13

Data Types: systemcomposer.arch.ComponentPort

ReferenceName — If linked component, the name of the model that the component
references
string
Data Types: char

Object Functions
saveAsModel Save the Architecture to a separate model
createSimulinkBehavior Create a Simulink model and link component to it
linkToModel Link component to a model
inlineComponent Inline reference architecture into model
connect Connect pairs of components

See Also
systemcomposer.arch.Architecture

Topics
“Create an Architecture Model”

Introduced in R2019a

2 Classes

2-14

systemcomposer.arch.ComponentPort
Represent input and output ports of a component

Description
This class inherits from systemcomposer.arch.BasePort.

Creation
addPort(compObj.Architecture,portName'in')

compPortObj = getPort(compObj,portName)

A component port is constructed by creating an architecture port on the architecture of the
component.

Properties
Direction — Port direction
'Input' | 'Output'

Direction of the port.

InterfaceName — Name of interface
string

Name of the interface associated with this port.

Interface — Interface associated with this port
systemcomposer.internal.SignalInterface object

Interface associated with this port, specified as a systemcomposer.internal.SignalInterface
object.

Connectors — Connectors of this port
systemcomposer.arch.Connector object

Connectors of this port, specified as a systemcomposer.arch.Connector object.

Connected — If port already has connections
logical

If the port already has connections, specified as logical.

Parent — Architecture that owns this port
systemcomposer.arch.Architecture object

Architecture that owns this port, specified as a systemcomposer.arch.Architecture object.

 systemcomposer.arch.ComponentPort

2-15

ArchitecturePort — Architecture port
systemcomposer.arch.ArchitecturePort object

Architecture port within the component that maps to this port, specified as a
systemcomposer.arch.ArchitecturePort object.

Object Functions
connect Connect pairs of components
setName
setInterface
createAnonymousInterface
applyStereotype Apply a stereotype to a model element

See Also
systemcomposer.arch.ArchitecturePort

Introduced in R2019a

2 Classes

2-16

systemcomposer.arch.Connector
Class that represents a connector between ports

Description
The connector class represents a connectore between ports. This class is derived from
systemcomposer.arch.element. This class inherits from systemcomposer.base.BaseElement and
implements the interface systemcomposer.base.BaseConnector.

Creation
Create a connector.

connector = connect(architecture, outports, inports)

Properties
ParentArchitecture — Handle to the parent component that owns this component
Architecture object
Data Types: systemcomposer.arch.Architecture

SourcePort — Source of the connection
architecture port | component port

The source port is an output port.

DestinationPort — Destination of the connection
architecture port | component port

The destination port is an input port.

Direction — Port direction
'Input' | 'Output'

Interface — Interface attached to the port
signal interface
Data Types: systemcomposer.interface.SignalInterface

Object Functions

See Also
systemcomposer.arch.Element

Topics
“Create an Architecture Model”

 systemcomposer.arch.Connector

2-17

Introduced in R2019a

2 Classes

2-18

systemcomposer.arch.Element
Base class of all model elements

Description
The Element class is the base class for all model elements — Architecture, component, port, and
connector. This class inherits from systemcomposer.base.BaseElement.

Creation
Create an architecture, component, port, or connector:

addComponent
addPort
connect

Properties
UUID — Unique identifier for a model element
character vector

<property description>
Example: '91d5de2c-b14c-4c76-a5d6-5dd0037c52df'

ExternalUID — External identifier
character vector

Set an external ID that is preserved over the lifespan of the element. The external ID is preserved
through all operations that preserve the UUID.
Example: 'network_connector_01'

Model — Handle to the parent System Composer model of the element
systemcomposer.arch.Model object

<property description>
Example: <property example>

SimulinkHandle — Simulink handle for Architecture element
'SimulinkHandle'

Simulink handle for Architecture element. This property is necessary for several Simulink related
workflows and for using Simulink Requirement APIs.
Example: name = get(object, 'SimulinkHandle')

 systemcomposer.arch.Element

2-19

Object Functions
applyStereotype Apply a stereotype to a model element
getStereotypes Get the stereotypes applied on the element
removeStereotype Remove a stereotype from a model element
setProperty Set the property value corresponding to a stereotype applied to the element
getProperty Get the property value corresponding to a stereotype applied to the element
destroy Remove and destroy a model element

See Also
systemcomposer.arch.BasePort | systemcomposer.arch.Component |
systemcomposer.arch.Connector

Topics
“Create an Architecture Model”

Introduced in R2019a

2 Classes

2-20

systemcomposer.arch.Model
Represent a System Composer model

Description
Use the Model class to create and manage architecture objects in a System Composer model.

Creation
objModel = systemcomposer.createModel(modelName)

The createModel method is the constructor for the systemcomposer.arch.Model class.

Properties
Name — Name of a model
character vector | string
Data Types: char | string

Architecture — Root architecture of a System Composer model
Architecture object
Data Types: systemcomposer.arch.Architecture

SimulinkHandle — Handle
real number

Handle to the Simulink representation of the System Composer model.
Data Types: double

Profiles — Array of handles to profiles
array of Profile objects

Array of handles to profiles attached to the model.
Data Types: systemcomposer.internal.profile.Profile

InterfaceDictionary — Dictionary object that holds interfaces
systemcomposer.interface.Dictionary object

Dictionary object that holds interfaces. If the model is not linked to an external dictionary, this is a
handle to the implicit dictionary

Views — Array of handles to model views
array of ViewArchitecture objects

Array of handles to model views.
Example: objViewArchitecture = get(objModel, 'Views')

 systemcomposer.arch.Model

2-21

Object Functions
open Open System Composer model
close Close System Composer model
save Save the architecture model or data dictionary
find Find architecture elements using a query
lookup Look up an architecture element
createViewArchitecture Create a view
openViews Open architecture views editor
applyProfile Apply profile to a model
removeProfile Remove profile from a model
linkDictionary Link data dictionary to an architecture model
unlinkDictionary Unlink dictionary from a model

See Also
Topics
“Create an Architecture Model”

Introduced in R2019a

2 Classes

2-22

systemcomposer.arch.VariantComponent
Represent a variant component in a System Composer model

Description
This class inherits from systemcomposer.arch.BasePort.

Creation
varComp = addVariant(archObj,compName)

The addVariantComponent method is the constructor for the
systemcomposer.arch.VariantComponent class.

Properties
Parent — Architecture that owns this variant component
systemcomposer.arch.Architecture object

Architecture that owns this variant component, specified as
systemcomposer.arch.Architecture object.

Ports — Input and output ports
systemcomposer.arch.ComponentPort objects

Input and output ports of this variant component, specified as
systemcomposer.arch.ComponentPort objects.

OwnedArchitecture — Architecture owned by variant component
systemcomposer.arch.Architecture object

Architecture directly owned by this variant component, specified as
systemcomposer.arch.Architecture object.

Architecture — Architectire of active variant choice
systemcomposer.arch.Architecture object

Architecture of the active variant choice, specified as a systemcomposer.arch.Architecture
object.

Object Functions
addChoice Add a variant choice to a variant component
setCondition Set the condition on the variant choice
setActiveChoice Set the active choice in the variant component
getChoices Get available choices in the variant component
getActiveChoice Get the active choice on the variant component
getCondition Return the variant control on the choice within the variant component

 systemcomposer.arch.VariantComponent

2-23

destroy Remove and destroy a model element

See Also
Topics
“Decompose and Reuse Components”

Introduced in R2019a

2 Classes

2-24

systemcomposer.interface.Dictionary
Class that represents an element in the signal interface

Description
The systemcomposer.interface.Dictionary class represents the interface dictionary of an
architecture model.

Creation
Create a signal element.

dictionary = <architecture>.InterfaceDictionary;

Properties
Interfaces — Interfaces defined in the dictionary
array of signal interfaces
Data Types: systemcomposer.interface.Dictionary

UUID — Unique identifier
string

Object Functions
addInterface Create a named interface in an interface dictionary
removeInterface Remove a named interface from an interface dictionary
getInterface Get the object for a named interface in an interface dictionary
getInterfaces Get the object for a named interface in an interface dictionary

See Also
systemcomposer.interface.SignalElement

Topics
“Define Interfaces”

Introduced in R2019a

 systemcomposer.interface.Dictionary

2-25

systemcomposer.interface.SignalElement
Class that represents an element in the signal interface

Description
The SignalElement class represents a single element in the signal interface

Creation
Create a signal element.

addElement(interface,elementName)

Properties
Interface — Handle to the parent interface of the element
Interface object
Data Types: systemcomposer.interface.SignalInterface

Name — Element name
string

Dimensions — Dimensions of the element
array of positive integers

Type — Data type of the element
string

Complexity — complexity of the element
'real' | 'complex'

Units — Units of the element
string

Minimum — Minimum value for the element
double

Maximum — Maximum value for the element
double

Description — Description text for the element
string

Object Functions
destroy Remove and destroy a model element

2 Classes

2-26

See Also
addInterface

Topics
“Define Interfaces”

Introduced in R2019a

 systemcomposer.interface.SignalElement

2-27

systemcomposer.interface.SignalInterface
Class that represents the structure of the signal interface

Description
The SignalInterface class represents the structure of the signal interface at a given port

Creation
Create an interface.

interface = addInterface(architecture, name)

Properties
Dictionary — Handle to the parent dictionary of the interface
Interface dictionary object
Data Types: systemcomposer.interface.Dictionary

Name — Interface name
string

Elements — Elements in interface
array of interface elements

Object Functions
addElement Add a signal interface element
removeElement Remove a signal interface element
getElement Get the object a signal interface element
destroy Remove and destroy a model element

See Also
systemcomposer.interface.SignalInterface

Topics
“Define Interfaces”

Introduced in R2019a

2 Classes

2-28

systemcomposer.io.ModelBuilder
Model builder for System Composer architecture models

Description
Build System Composermodels using the model builder utility class. Build System Composer models
with these sets of information: components and their position in architecture hierarchy, ports and
their mappings to components, connections between the components through ports, and interfaces in
architecture models and their mappings to ports.

Creation

Syntax
builder = systemcomposer.io.ModelBuilder(profile)

Description

builder = systemcomposer.io.ModelBuilder(profile) creates the ModelBuilder object.

Input Arguments

profile — Metadata XML file
character vector

File that contains a set of properties for any model element.

Output Arguments

builder — Model builder instantiation
ModelBuilder object

ModelBuilder object used to build a System Composer model.

Properties
Components — Component information
table

Table containing the hierarchical information of components, type of component (for example,
reference, variant, or adapter), stereotypes applied on component, and ability to set property values
of component.

Ports — Ports information
table

Table containing the information about ports, their mappings to components and interfaces, as well
as stereotypes applied on them.

 systemcomposer.io.ModelBuilder

2-29

Connections — Connections information
table

Table containing information about the connections between the ports defined in ports table also
stereotypes applied on connections.

Interfaces — Interfaces information
table

Table containing the definitions of various interfaces and their elements.

Utility Functions
Components Description
addComponent(compName, ID, ParentID) Add component with name and ID as a child of

component with ID as ParentID. In case of root,
ParentID is 0.

setComponentProperty(ID, varargin) Set stereotype on component with ID. Key value
pair of property name and value defined in the
stereotype can be passed as input. In this
example

 builder.setComponentProperty(ID, 'StereotypeName',...
'UAVComponent.PartDescriptor','ModelName',kind,'Manufacturer',domain)

ModelName and Manufacturer are properties
under stereotype PartDescriptor.

Ports Description
addPort(portName, direction, ID,
compID)

Add port with name and ID with direction (either
Input or Output) to component with ID as
compID.

setPropertyOnPort(ID, varargin) Set stereotype on port with ID. Key value pair of
the property name and the value defined in the
stereotype can be passed as input.

Connections Description
addConnection(connName, ID,
sourcePortID,destPortID)

Add connection with name and ID between ports
with sourcePortID (direction: Output) and
destPortID (direction: Input) defined in the
ports table.

setPropertyOnConnection(ID, varargin) Set stereotype on connection with ID. Key value
pair of the property name and the value defined
in the stereotype can be passed as input.

Interfaces Description
addInterface(interfaceName, ID) Add interface with name and ID to a data

dictionary.

2 Classes

2-30

Interfaces Description
addElementInInterface(elementName, ID,
interfaceID, datatype, dimensions,
units, complexity, Maximum, Minimum)

Add element with name and ID under an interface
with ID as interfaceID. Data types,
dimensions, units, complexity, and maximum and
minimum are properties of an element. These
properties are specified as strings.

addAnonymousInterface(ID, datatype,
dimensions, units, complexity,
Maximum, Minimum)

Add anonymous interface with ID and element
properties like data type, dimensions, units,
complexity, maximum and minimum. Data type of
an anonymous interface cannot be another
interface name. Anonymous interfaces do not
have elements like other interfaces.

Interfaces and Ports Description
addInterfaceToPort(interfaceID,
portID)

Link an interface with ID specified as
InterfaceID to a port with ID specifiedas
PortID.

Models Description
build(modelName) Build model with model name passed as input.

Logging and Reporting Description
getImportErrorLog() Get ErrorLogs generated while importing the

model . Called after the build() function
getImportReport() Get a report of the import. Called after the

build() function.

Examples

Import System Composer Architecture using Model Builder.

This example shows how to import architecture specifications into System Composer using the
systemcomposer.io.modelBuilder() utility class. These architecture specifications can be defined in
external source such as Excel file.

In system composer, an architecture is fully defined by three sets of information:

• Components and its position in architecture hierarchy
• Ports and its mapping to components
• Connections between the components through ports In this example, we also import interface data
definitions from external source.

• Interfaces in architecture models and its mapping to ports

This example uses systemcomposer.modelBuilder class to pass all of the above architecture
information and import a System Composer model.

In this example, architecture information of a small UAV system is defined in an Excel spreadsheet
and is used to create a System Composer architecture model.

 systemcomposer.io.ModelBuilder

2-31

External Source Files

• Architecture.xlsx : This Excel file contains hierarchical information of the architecture model. This
example maps the external source data to System Composer model elements. Below is the
mapping of information in column names to System Composer model elements.

 # Element : Name of the element. Either can be component or port name.
 # Parent : Name of the parent element.
 # Class : Can be either component or port(Input/Output direction of the port).
 # Domain : Mapped as component property. Property "Manufacturer" defined in the
 profile UAVComponent under Stereotype PartDescriptor maps to Domain values in excel source file.
 # Kind : Mapped as component property. Property "ModelName" defined in the
 profile UAVComponent under Stereotype PartDescriptor maps to Kind values in excel source file.
 # InterfaceName : If class is of port type. InterfaceName maps to name of the interface linked to port.
 # ConnectedTo : In case of port type, it specifies the connection to
 other port defined in format "ComponentName::PortName".

• DataDefinitions.xlsx : This excel file contains interface data definitions of the model. This example
assumes the below mapping between the data definitions in the source excel file and interfaces
hierarchy in System Composer :

 # Name : Name of the interface or element.
 # Parent : Name of the parent interface Name(Applicable only for elements) .
 # Datatype : Datatype of element. Can be another interface in format
 Bus: InterfaceName
 # Dimensions : Dimensions of the element.
 # Units : Unit property of the element.
 # Minimum : Minimum value of the element.
 # Maximum : Maximum value of the element.

Step 1. Instantiate the model builder class

You can instantiate the model builder class with a profile name.

Make sure the current directory is writable because this example will be creating files.

[stat, fa] = fileattrib(pwd);
if ~fa.UserWrite
 disp('This script must be run in a writable directory');
 return;
end
% Name of the model to build.
modelName = 'scExampleModelBuider';
% Name of the profile.
profile = 'UAVComponent';
% Name of the source file to read architecture information.
architectureFileName = 'Architecture.xlsx';

% Instantiate the ModelBuilder
builder = systemcomposer.io.ModelBuilder(profile);

Step 2. Build Interface Data Definitions.

Reading the information in external source file DataDefinitions.xlsx, we build the interface data
model.

Create MATLAB tables from source Excel file.

2 Classes

2-32

opts = detectImportOptions('DataDefinitions.xlsx');
opts.DataRange = 'A2'; % force readtable to start reading from the second row.
definitionContents = readtable('DataDefinitions.xlsx', opts);

% systemcomposer.io.IdService class generates unique ID for a
% given key
idService = systemcomposer.io.IdService();

for rowItr =1:numel(definitionContents(:,1))
 parentInterface = definitionContents.Parent{rowItr};
 if isempty(parentInterface)
 % In case of interfaces adding the interface name to model builder.
 interfaceName = definitionContents.Name{rowItr};
 % Get unique interface ID. getID(container,key) generates
 % or returns(if key is already present) same value for input key
 % within the container.
 interfaceID = idService.getID('interfaces',interfaceName);
 % Builder utility function to add interface to data
 % dictionary.
 builder.addInterface(interfaceName,interfaceID);
 else
 % In case of element read element properties and add the element to
 % parent interface.
 elementName = definitionContents.Name{rowItr};
 interfaceID = idService.getID('interfaces',parentInterface);
 % ElementID is unique within a interface.
 % Appending 'E' at start of ID for uniformity. The generated ID for
 % input element is unique within parent interface name as container.
 elemID = idService.getID(parentInterface,elementName,'E');
 % Datatype, dimensions, units, minimum and maximum properties of
 % element.
 datatype = definitionContents.DataType{rowItr};
 dimensions = string(definitionContents.Dimensions(rowItr));
 units = definitionContents.Units(rowItr);
 % Make sure that input to builder utility function is always a
 % string.
 if ~ischar(units)
 units = '';
 end
 minimum = definitionContents.Minimum{rowItr};
 maximum = definitionContents.Maximum{rowItr};
 % Builder function to add element with properties in interface.
 builder.addElementInInterface(elementName, elemID, interfaceID, datatype, dimensions, units, 'real', maximum, minimum);
 end
end

Step 3. Build Architecture Specifications.

Architecture specifications de Create MATLAB tables from source Excel file.

excelContents = readtable(architectureFileName);
% Iterate over each row in table.
for rowItr =1:numel(excelContents(:,1))
% Read each row of the excel file and columns.
 class = excelContents.Class(rowItr);
 Parent = excelContents.Parent(rowItr);
 Name = excelContents.Element{rowItr};
 % Populating the contents of table using the builder.

 systemcomposer.io.ModelBuilder

2-33

 if strcmp(class,'component')
 ID = idService.getID('comp',Name);
 % Root ID is by default set as zero.
 if strcmp(Parent,'scExampleSmallUAV')
 parentID = "0";
 else
 parentID = idService.getID('comp', Parent);
 end
 % Builder utility function to add component.
 builder.addComponent(Name,ID,parentID);
 % Reading the property values
 kind = excelContents.Kind{rowItr};
 domain = excelContents.Domain{rowItr};
 % *Builder to set stereotype and property values*
 builder.setComponentProperty(ID, 'StereotypeName','UAVComponent.PartDescriptor','ModelName',kind,'Manufacturer',domain);
 else
 % In this example, concatenation of port name and parent component name
 % is used as key to generate unique IDs for ports.
 portID = idService.getID('port',strcat(Name,Parent));
 % For ports on root architecture. compID is assumed as "0".
 if strcmp(Parent,'scExampleSmallUAV')
 compID = "0";
 else
 compID = idService.getID('comp',Parent);
 end
 % Builder utility function to add port.
 builder.addPort(Name, class, portID, compID);

 % InterfaceName specifies the name of the interface linked to port.
 interfaceName = excelContents.InterfaceName{rowItr};

 % Get interface ID. getID() will return the same IDs already
 % generated while adding interface in Step 2.
 interfaceID = idService.getID('interfaces',interfaceName);
 % Builder to map interface to port.
 builder.addInterfaceToPort(interfaceID, portID);

 % Reading the connectedTo information to build connections between
 % components.
 connectedTo = excelContents.ConnectedTo{rowItr};
 % connectedTo is in format -:
 % (DestinationComponentName::DestinationPortName).
 % For this example, considering the current port as source of the connection.
 if ~isempty(connectedTo)
 connID = idService.getID('connection',connectedTo);
 splits = split(connectedTo,'::');
 % Get the port ID of the connected port.
 % In this example, port ID is generated by concatenating
 % port name and parent component name. If port id is already
 % generated getID() function returns the same id for input key.
 connectedPortID = idService.getID('port',strcat(splits(2),splits(1)));
 % Using builder to populate connection table.
 sourcePortID = portID;
 destPortID = connectedPortID;
 % Builder to add connections.
 builder.addConnection(connectedTo,connID,sourcePortID,destPortID);
 end

2 Classes

2-34

 end
end

Step 3. Builder build method imports model from populated tables.

[model, importReport] = builder.build(modelName);

Close Model

bdclose(modelName);

See Also
Topics
“Importing and Exporting Architecture Models”

Introduced in R2019b

 systemcomposer.io.ModelBuilder

2-35

systemcomposer.profile.Profile
Class that represents a profile

Description
The Profile class represents architecture profiles.

Creation
profiles = <architecture>.Profiles;

Properties
Name — Name of the profile
string
Data Types: char

Description — Description text for the profile
string
Data Types: char

Object Functions
addStereotype
removeStereotype Remove a stereotype from a model element

See Also
systemcomposer.profile.Stereotype

Topics
“Define Profiles and Stereotypes”

Introduced in R2019a

2 Classes

2-36

systemcomposer.profile.Property
Class that represents a property

Description
The Property class represents properties in a stereotype.

Creation
addProperty(stereotype,AttributeName,AttributeValue)

Properties
Name — Name of the property
string
Data Types: char

Name — Property name
string
Data Types: char

Datatype — Property data type
valid data type string
Data Types: char

Dimensions — Dimensions of property
positive integer array
Data Types: char

Min — Minimum value
numeric value
Data Types: double

Max — Maximum value
numeric value
Data Types: double

Units — Property units
string
Data Types: char

Object Functions
destroy Remove and destroy a model element

 systemcomposer.profile.Property

2-37

See Also
systemcomposer.profile.Profile | systemcomposer.profile.Stereotype

Topics
“Define Profiles and Stereotypes”

Introduced in R2019a

2 Classes

2-38

systemcomposer.profile.Stereotype
Class that represents a stereotype

Description
The Stereotype class represents architecture stereotypes in a profile.

Creation
addStereotype(profile,name,type)

Properties
Name — Name of the stereotype
string
Data Types: char

Description — Description text for the stereotype
string
Data Types: char

Icon — Icon for the stereotype
string
Data Types: char

Parent — Stereotype from which this stereotype inherits its properties
systemcomposer.profile.Stereotype object

Stereotype from which this stereotype inherits its properties, specified as a
systemcomposer.profile.Stereotype object.

AppliesTo — Element type to which this stereotype can be applied
stereotype

Element type to which this stereotype can be applied.

Abstract — Whether the stereotype is abstract
true | false

If true then stereotype cannot be directly applied on model elements, but instead serves as a parent
for other stereotypes.

Properties — Array of property definitions
stereotype

Array of property definitions owned or inherited by this stereotype.

 systemcomposer.profile.Stereotype

2-39

Object Functions
addProperty Define a custom property for a stereotype
removeProperty Remove a property from a stereotype
reparent Move stereotype
setDefaultComponentStereotype
setDefaultConnectorStereotype Set the default stereotype for connectors

See Also
Topics
“Define Profiles and Stereotypes”

Introduced in R2019a

2 Classes

2-40

systemcomposer.view.BaseViewComponent
Base class for view components

Description
This class inherits from systemcomposer.view.ViewElement and implements the interface
systemcomposer.base.BaseComponent.

Properties
Name — Name of the view component
character vector | string

Name of the view component.
Example: name = get(objBaseViewComponent, 'Name'); set(objBaseViewComponent,
'Name', name)

Parent — Handle to parent view architecture of this component
ViewArchitecture object

Handle to the parent view architecture of this component.
Example: parent = get(objBaseViewComponent, 'Parent')

Architecture — Handle to view architecture of this component
ViewArchitecture object

Handle to the view architecture of this component.
Example: p = get(objBaseViewComponent, 'ViewArchitecture')

Examples

See Also

Introduced in R2019b

 systemcomposer.view.BaseViewComponent

2-41

systemcomposer.view.ComponentOccurrence
Shadow of a component from the composition in a view

Description
This class inherits from systemcomposer.view.BaseViewComponent.

Properties
Component — Handle to the composition
systemcomposer.arch.BaseComponent object

Handle to the composition Component of this occurrence.
Example: get(object, 'Component')

See Also

Introduced in R2019b

2 Classes

2-42

systemcomposer.view.ViewArchitecture
View components in an architecture view

Description
A view architecture describes a set of view components that make up a view. This class inherits from
the systemcomposer.view.ViewElement class and implements the
systemcomposer.base.BaseArchitecture interface.

Properties
Name — Name of the architecture
character vector | string

Architecture name derived from the parent component or model name to which the architecture
belongs.
Example: name = get(objViewArchitecture, 'Name')

IncludeReferenceModels — Control inclusion of referenced models
true | false

Control inclusion of referenced models.
Example: tf = get(objViewArchitecture, 'IncludeReferenceModels')

Color — Color of the view architecture
character vector | string

Color of the view architecture, specified as a character vector or string (for example, ‘blue’,
‘black’, ‘green’) or RGB value encoded in a hexadecimal string (for example, ‘#FF00FF’,
‘#DDDDDD’). An invalid color string results in an error.
Example: color = get(objViewArchitecture, 'Color')

Description — Description of the view architecture
character vector | string

Description of the view architecture.
Example: description = get(objViewArchitecture, 'Description');
set(objViewArchitecture, 'Description', description)

Parent — Component that owns the view architecture
systemcomposer.view.BaseViewComponent object

Handle to the component that owns this view architecture. The returned object is of type
systemcomposer.view.BaseViewComponent. For a root view architecture, returns an empty
handle.
Example: parentComponent = get(objViewArchitecture, 'Parent')

 systemcomposer.view.ViewArchitecture

2-43

Components — Array of handles to child components
array of systemcomposer.base.BaseViewComponents objects

Array of handles to the set of child components of this view Architecture.
Example: childComponents = get(objViewArchitecture, 'Components')

Methods
addComponent Add component to view given path
removeComponent Remove a component from a view

Examples

See Also

Introduced in R2019b

2 Classes

2-44

systemcomposer.view.ViewComponent
View component within an architecture view

Description
A view component is a component that exist only in the view it is created in. These components do not
exist in the composition. This class inherits from systemcomposer.view.BaseViewComponent.

See Also

Introduced in R2019b

 systemcomposer.view.ViewComponent

2-45

systemcomposer.view.ViewElement
Base class of all view elements

Description
Base class of all view elements. This class inherits from systemcomposer.base.BaseElement.

Properties
ZCIdentifier — Identifier of object
character vector (default) | string

Gets the identifier of an object. Used by Simulink Requirements.
Example: identifier = get(objViewElement, 'ZCIdentifier')

Examples

See Also

Introduced in R2009b

2 Classes

2-46

Blocks

3

Component
Add component to an architecture model

Description
Use a Component block to represent a structural or behavioral element at any level of an architecture
model hierarchy. Add ports to the block for connecting to other components. Define an interface for
the ports and add properties using stereotypes.

Ports
Input Port

Source — Provide connection from another component

Output Port

Destination — Provide connection to another component

See Also
Blocks
Adapter | Reference Component | Variant Component

Topics
“Implement Components in Simulink”

Introduced in R2019a

3 Blocks

3-2

Reference Component
Link to an architectural definition or Simulink behavior

Description
Use a Reference Component block to link an architectural definition of a component or a Simulink
behavior.

Ports
Input Port

Source — Provide connection from another component

Output Port

Destination — Provide connection to another component

See Also
Blocks
Adapter | Component | Variant Component

Topics
“Implement Components in Simulink”

Introduced in R2019a

 Reference Component

3-3

Variant Component
Add components with alternative designs

Description
Use a Variant Component block to create multiple deign alternatives for a component.

Ports
Input Port

Source — Provide connection from another component

Output Port

Destination — Provide connection to another component

See Also
Blocks
Adapter | Component | Reference Component | Subsystem

Topics
“Decompose and Reuse Components”

Introduced in R2019a

3 Blocks

3-4

Adapter
Connect components with different interfaces

Description
The Adapter block allows you to adapt dissimilar interfaces. Connect the source and destination ports
of components that have different interface definitions.

Limitations
• When used for structural interface adaptations, the Adapter block uses bus element ports

internally and, subsequently, only supports virtual buses.

Ports
Input Port

Source — Provide connection from a component

Output Port

Destination — Provide connection to a component

See Also
Blocks
Component | Reference Component | Variant Component

Topics
“Assign Interfaces to Ports”
“Interface Adapter”

Introduced in R2019a

 Adapter

3-5

	Functions
	addChoice
	addComponent
	addComponent
	addVariantComponent
	addElement
	addPort
	addInterface
	addProperty
	addStereotype
	applyProfile
	applyStereotype
	batchApplyStereotype
	close
	connect
	systemcomposer.createDictionary
	systemcomposer.createModel
	systemcomposer.createProfile
	createSimulinkBehavior
	createViewArchitecture
	createViewComponent
	deleteInstance
	destroy
	systemcomposer.exportModel
	systemcomposer.extractArchitectureFromSimulink
	find
	getActiveChoice
	getChoices
	getCondition
	getElement
	getEvaluatedPropertyValue
	getInterface
	getInterfaceNames
	getPort
	getProperty
	getStereotypes
	getValue
	HasStereotype
	systemcomposer.importModel
	inlineComponent
	instantiate
	isArchitecture
	isComponent
	isConnector
	isPort
	isReference
	iterate
	linkDictionary
	linkToModel
	loadInstance
	systemcomposer.loadModel
	systemcomposer.loadProfile
	lookup
	makeVariant
	open
	systemcomposer.openModel
	openViews
	removeComponent
	removeElement
	removeInterface
	removeProfile
	removeProperty
	removeStereotype
	reparent
	save
	saveAsModel
	saveInstance
	setActiveChoice
	setCondition
	setDefaultComponentStereotype
	setDefaultConnectorStereotype
	setDefaultPortStereotype
	setProperty
	setValue
	unlinkDictionary
	updateInstance

	Classes
	systemcomposer.analysis.Instance
	systemcomposer.arch.Architecture
	systemcomposer.arch.ArchitecturePort
	systemcomposer.arch.BaseComponent
	systemcomposer.arch.BasePort
	systemcomposer.arch.Component
	systemcomposer.arch.ComponentPort
	systemcomposer.arch.Connector
	systemcomposer.arch.Element
	systemcomposer.arch.Model
	systemcomposer.arch.VariantComponent
	systemcomposer.interface.Dictionary
	systemcomposer.interface.SignalElement
	systemcomposer.interface.SignalInterface
	systemcomposer.io.ModelBuilder
	systemcomposer.profile.Profile
	systemcomposer.profile.Property
	systemcomposer.profile.Stereotype
	systemcomposer.view.BaseViewComponent
	systemcomposer.view.ComponentOccurrence
	systemcomposer.view.ViewArchitecture
	systemcomposer.view.ViewComponent
	systemcomposer.view.ViewElement

	Blocks
	Component
	Reference Component
	Variant Component
	Adapter

